UNIVERSITY OF SOUTH ALABAMA

2017 Freshman Cohort Retention Report

Executive Summary

This report summarizes the one-year retention of 1,868 students in the University of South Alabama (USA) 2017 first-time full-time baccalaureate degree-seeking freshman cohort. The one-year retention rate for the 2017 freshman cohort was 74%.

Results indicated retention of students with a lower high school GPA or lower ACT Composite score or students who are 19 years old or older may require additional resources and monitoring to enable and/or encourage them to persist towards successfully completing a degree at USA. Students who participated in Greek life at USA were more likely to return to USA which emphasizes the importance of students becoming involved in student organizations at USA that allow them to connect with students with similar interests outside of the classroom as well. Similar to previous studies, students attending the earlier freshman summer orientation sessions were more likely to return than students attending the later orientation sessions meaning that the orientation session attended could provide another key factor for identifying at-risk freshmen students early on in their college experience.

The importance of financial support in the form of freshman scholarships or other types of scholarships was also clear. Additional USA freshman scholarships should be considered to continue to attract top students to attend USA. In addition, need-based grants could be utilized to assist students in greater need of financial support to encourage them to return to and persist towards completing a degree at USA.

Results also showed students who received an at-risk midterm grade (D, F, or U) in the Fall 2017 semester in four or more courses for lack of attendance and/or poor academic performance and students who were placed on probation after the Fall 2017 semester ended were unlikely to return to USA one year later. These findings highlight the importance of intervening prior to the end of the fall semester with students who receive an at-risk midterm grade to help prevent these students from subsequently receiving a low USA GPA and being placed on probation after the fall semester concludes.

Overview

The following report provides a detailed analysis about the one-year retention of the 1,868 first-time fulltime baccalaureate degree-seeking freshmen students in the University of South Alabama (USA) 2017 freshman cohort. Retention in the context of this report is defined as whether freshmen students returned and enrolled one year later in the Fall 2018 semester. Similar to reports written by Institutional Research, the input-environment-outcome (IEO) model developed by Alexander W. Astin ${ }^{1}$ was used as a conceptual framework to guide this analysis.

[^0]Cross tabular results for each variable and whether the student returned are reported. Comparisons for each subgroup are made to the overall retention rate of the cohort (74%). Significant mean differences for the input, environmental, and outcome variables are also indicated.

Additionally, five logistic regression models were tested. The first model included the input ${ }^{2}$ variables. The second model included the input and the environmental ${ }^{3}$ variables. The third model included two outcome variables known midway through or after the end of the Fall 2017 semester ${ }^{4}$. The fourth model and fifth model tested a different outcome variable known after the end of the Summer 2018 semester ${ }^{5}$. The predictive power of each model for explaining whether the student would return ($\mathrm{Yes} / \mathrm{No}$) is reported as well as which variables were significant in each of the five models.

Cross Tabular Results

Cross tabular results for each variable and whether the student returned are summarized in the following section. Comparisons are made for each subgroup of the variable to the one-year retention rate (74\%) of the 1,868 freshmen in the cohort. These comparisons illustrate which subgroups of students returned at higher, similar, or lower rates than the overall cohort retention rate of 74%. In addition, significant mean differences for the input, environmental, and the outcome variables known midway through or after the end of the Fall 2017 semester and after the end of the Summer 2018 semester are reported.

Input Variable Cross Tabular Results

For the input variables included in this analysis (see Table 1), female students (76\%) returned at a higher rate than male students (72\%). The mean difference between female students and male students was statistically significant (see Appendix: Independent T-Test Tables).

[^1]Table 1: Comparison of Input Variables to 2017 Cohort Retention Rate

Variable	Retention Rate >= 74\%	Count	Retention Rate < 74\%	Count
*Gender				
	*Female (76\%)	1,146	Male (72\%)	722
*Race/Ethnicity				
	*Asian (100\%)	34	African-American (73\%)	386
	Other (80\%)	46	Non-Resident Alien (73\%)	22
	White (74\%)	1,217	Hispanic (72\%)	86
			Multiracial (71\%)	77
*Age				
	*17 years old or younger (85\%)	119	20 years old or older (66\%)	38
	18 years old (75\%)	1,599	19 years old (63\%)	112
Region				
	Mobile or Baldwin County (75\%)	769	Rest of United States (73\%)	168
	Mississippi service area (75\%)	109	International (73\%)	22
	Florida service area (75\%)	107		
	Rest of Alabama (74\%)	693		
First Generation				
	No (75\%)	1,503	Yes (73\%)	365
*High School GPA				
	*3.51 or higher (81\%)	1,115	3.01-3.5 (68\%)	489
			3.0 or lower (58\%)	256
*ACT Composite Score				
	*30 or higher (85\%)	165	22-23 (71\%)	332
	24-25 (80\%)	326	19 or lower (71\%)	322
	26-27 (82\%)	174	20-21 (67\%)	347
	28-29 (77\%)	147		

Note: *Significant mean difference at .05 p level based on Independent T-Test for two group comparisons or at least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

In terms of race/ethnicity, African-American (73\%), Non-Resident Alien (73\%), Hispanic (72\%), and multiracial (71%) students returned at a lower rate than the cohort retention rate (74%). The mean difference between retention of Asian students and all other race/ethnicity groups besides Non-Resident Alien students was statistically significant (see Appendix: ANOVA Tables).

Retention comparisons based on age showed that students who were 18 years old or younger returned at a higher rate (at least 75\%) than the cohort retention rate (74\%). The mean difference between retention of student who were 17 years old or younger compared to students who were 18 years old or 19 years old was statistically significant (see Appendix: ANOVA Tables).

Comparisons based on what region the student came from showed students from Mobile or Baldwin County (75\%), students from the Mississippi service area (75\%), and students from the Florida service area (75%) returned at a higher rate than the overall cohort (74%). The retention rate of students who indicated they were a first generation student (73\%) on the Free Application for Federal Student Aid (FAFSA) application was slightly lower than the overall cohort (74\%).

For the most part, as high school GPA or ACT Composite score decreased, retention also decreased. Students who had a high school GPA ranging between 3.01-3.5 or lower (at most 68\%) returned at a lower rate than the overall cohort (74\%). Similarly, students who had an ACT Composite score of 22-23 or lower (at most 71%) returned at a lower rate than the cohort retention rate (74%). The mean difference between retention of students with a high school GPA of 3.51 or higher in comparison to both of the
lower high school GPA groups was statistically significant (see Appendix: ANOVA Tables). The mean difference between retention of students with an ACT Composite score of 30 or higher in comparison to students with an ACT Composite score of 22-23 or lower was also statistically significant (see Appendix: ANOVA Tables).

Environmental Variable Cross Tabular Results

For the environmental variables included in this analysis, USA Day attendance results (see Table 2) showed students who attended one or more USA Day (at least 79\%) returned at a higher rate than the overall cohort (74\%). There was a significant mean difference between students who attended one USA Day in comparison to students who did not attend an USA Day (see Appendix: ANOVA Tables).

Table 2: Comparison of Environmental Variables to 2017 Cohort Retention Rate

Variable	Retention Rate >= 74\%	Count	Retention Rate < 74\%	Count
*USA Day Attendance				
	Attended Multiple USA Days (80\%)	15	*Did Not Attend (73\%)	1,396
	Attended 1 USA Day (79\%)	457		
*Orientation Session				
	*Freshman Session 1 (88\%)	189	Freshman Session 6 (72\%)	170
	Freshman Session 4 (81\%)	181	Freshman Session 8 (71\%)	151
	Freshman Session 3 (80\%)	183	Freshman Session 9 (68\%)	151
	Freshman Session 5 (80\%)	180	Freshman Session 7 (66\%)	189
	Freshman Session 2 (78\%)	189	Freshman Session 10 (64\%)	131
	May Orientation (75\%)	24	August/Other Orientation (63\%)	130
*College				
	*Allied Health (82\%)	300	Arts and Sciences (72\%)	587
	Education (77\%)	186	Nursing (72\%)	316
	Computing (77\%)	81	Business (70\%)	173
	Engineering (75\%)	225		
*USA Freshman Scholarship				
	*Yes (79\%)	920	No (70\%)	948
*Other Scholarship				
	*Yes (79\%)	1,118	No (68\%)	750
*Pell Grant				
	No (77\%)	1,090	*Yes (71\%)	778
Test Fee Waiver				
	No (75\%)	1,765	Yes (71\%)	103
Housing				
	On campus (75\%)	1,128	Off campus (74\%)	740
*Learning Community				
	*Yes (76\%)	1,423	No (70\%)	445
Freshman Seminar				
	No (75\%)	510	Yes (74\%)	1,358
*Greek Life Participation				
	*Yes (88\%)	290	No (72\%)	1,578

Note: *Significant mean difference at .05 p level based on Independent T-Test for two group comparisons or at least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

In terms of the orientation session attended, the retention rate of students who attended one of the first five freshman summer orientation sessions was at least 78%. Retention rates based on the orientation session attended ranged from a high of 88% for students who attended the Freshman Session 1 to a low of 63% for students who attended either the August Orientation session, a transfer orientation session, or an unknown orientation session. When using the Freshman Session 1 orientation session as a comparison
group, there was a significant mean difference between the Freshman Session 1 group in comparison to Freshman Sessions 6, 7, 8, 9, and 10 and the combined group that attended either the August Orientation session, a transfer orientation session, or an unknown orientation session (see Appendix: ANOVA Tables).

Retention comparisons based on the college housing the major the student initially selected showed Allied Health (82\%), Education (77\%), Computing (77\%), and Engineering (75\%) students returned at a higher rate than the overall cohort (74\%). When using Allied Health as a comparison group, there was a significant mean difference between students who initially selected a major in Allied Health in comparison to students in Arts and Sciences, Nursing, and Business (see Appendix: ANOVA Tables).

Scholarship retention rate comparisons illustrated that receiving scholarships positively affected retention. Students receiving a USA freshman scholarship (79\%) or some other type of scholarship ${ }^{6}$ (79%) returned at a higher rate than the cohort retention rate (74\%). The mean difference between students who received a USA freshman scholarship compared to students who did not receive a USA freshman scholarship was statistically significant (see Appendix: Independent T-Test Tables). Similarly, the mean difference between students who received some other type of scholarship compared to students who did not was also statistically significant (see Appendix: Independent T-Test Tables).

Financial aid related comparisons showed a relationship between the financial resources of the student and/or the student's family and retention. Students who received a Pell Grant (71\%) or received a NACAC fee waiver for ACT or SAT test-taking purposes (71\%), due to meeting one of the indicators of economic need, returned at a lower rate than the overall cohort (74\%).

Students who lived on campus (75%) or participated in a learning community (76%) returned at a higher rate than the overall cohort (74\%). The mean difference between retention of students who participated in a learning community and students who did not participate in a learning community was statistically significant (see Appendix: Independent T-Test Tables).

Students who did not take Freshman Seminar (75\%) returned at a slightly higher rate compared to students who took Freshman Seminar (74\%). However, students who participated in Greek life (88\%) returned at a higher rate than the overall cohort (74%). In addition, the mean difference between retention of students who participated in Greek life and students who did not participate in Greek life was statistically significant (see Appendix: Independent T-Test Tables).

Outcome Variable Midway Through or After Fall 2017 Cross Tabular Results

Outcome variables incorporated into this analysis that were known midway through or after Fall 2017 included the number of at-risk midterm grades (D, F, or U) a student had in Fall 2017 and whether the student was placed on probation after Fall 2017 (see Table 3). Students who did not have an at-risk midterm grade (85%) returned at a higher rate than the overall cohort (74%). The mean difference for students who did not have an at-risk midterm grade in Fall 2017 compared to students who had an at-risk midterm grade in one or more courses was statistically significant (see Appendix: ANOVA Tables).

[^2]Table 3: Comparison of Outcome Variables Midway Through/After Fall 2017 to 2017 Cohort Retention Rate

Variable	Retention Rate >=74\%	Count	Retention Rate < 74\%	Count
*Number of At-Risk Midterm Grades in Fall 2017				
	*No At-Risk MT Grades (85\%)	1,004	2 At-Risk MT Grades (66\%)	213
	1 At-Risk MT Grade (74\%)	428	3 At-Risk MT Grades (50\%)	105
			4 or More At-Risk MT Grades (25\%)	118
*Probation Status after Fall 2017	No (83\%)	1,566	*Yes (32\%)	302

Note: *At least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

Students who were not on probation after Fall 2017 returned at a much higher rate (83\%) compared to students who were placed on probation after the Fall 2017 semester ended (32\%). The mean difference between students who were not on probation and students who were placed on probation was statistically significant (see Appendix: Independent T-Test Tables).

Outcome Variable After Summer 2018 Cross Tabular Results

Outcome variables incorporated into this analysis that were known after Summer 2018 included the number of hours earned after Summer 2018 at USA and the USA GPA after Summer 2018 (see Table 4). As the number of USA hours earned increased the retention rate also increased. Similarly, students with a higher USA GPA were more likely to return than students with a lower USA GPA.

Table 4: Comparison of Outcome Variables After Summer 2018 to 2017 Cohort Retention Rate

Variable	Retention Rate >= 74\%	Count	Retention Rate < 74\%	Count
*USA Hours Earned after Summer 2018				
	*30.5 or more (95\%)	804	18.5-24 (72\%)	162
	24.5-30 (87\%)	515	12.5-18 (24\%)	148
			6.5-12 (17\%)	87
			0-6 (8\%)	127
*USA GPA after Summer 2018				
	3.51-4.0 (90\%)	567	*2.0 or lower (27\%)	321
	3.01-3.5 (87\%)	427		
	2.51-3.0 (82\%)	331		
	2.01-2.5 (76\%)	197		

Note: *At least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

Students who earned 24.5 to 30 or more hours at USA after Summer 2018 returned at a higher rate (at least 87%) compared to students who earned 18.5 to 24 or fewer hours (at most 72%). The mean difference between students who earned 30.5 or more hours at USA compared to students in all other USA hours earned groups was statistically significant (see Appendix: ANOVA Tables).

Students with a USA GPA of 2.01 to 2.5 or higher after Summer 2018 returned at a much higher rate (at least 76%) compared to students with a USA GPA of 2.0 or lower (27%). Furthermore, the mean difference between students who had a USA GPA of 2.0 or lower compared to students in all other USA GPA groups was statistically significant (see Appendix: ANOVA Tables).

Logistic Regression Results

The focus of this study was to determine which student characteristics (inputs) and environmental characteristics (institutional/other support characteristics) can be used to best predict the retention of USA freshmen students. Since the focus of this study was prediction and classification of a dichotomous
outcome variable, stepwise logistic regression was used. This technique allows for the identification of significant variables that contribute to the classification of individuals by using an algorithm to determine the importance of predictor variables. Stepwise logistic regression was used to identify significant variables in the model for predicting the outcome variable. Results of the final step for the model are reported including the classification rate for the model. Additionally, an analysis of the proportionate change in odds for significant variables is provided.

As a part of this study, five logistic models were tested. The first model included the input variables. The second model included the input variables and the environmental variables. The third model tested two outcome variables known midway through or after the Fall 2017 semester: 1) the number of at-risk midterm grades a student had in Fall 2017 and 2) whether the student was placed on probation after Fall 2017 to see what happened when these variables were used as predictors of retention. The fourth and fifth models tested a different outcome variable known after the Summer 2018 semester. The fourth model tested the number of USA hours earned after Summer 2018 and the fifth model tested the USA GPA after Summer 2018 to see what happened when these outcomes were used as individual predictors of retention.

The number of students (selected cases) included in each model varied based on what variables were included in the final model because some students in the cohort had missing data, such as a high school GPA and/or an ACT Composite score. Because complete cases were required to compute the results, the final number of students used for each model ranged from a low of 1,812 students for the first and second models to a high of 1,868 students for the third model. The total number of students without any missing data for any of the variables used in the five different models was 1,787 . The retention rate for this subset of 1,787 students was 76%. With a similar retention rate (76% compared to 74%) and 1,787 students representing 96% of the entire cohort, the models tested provided a solid representation of retention for this population. Since the focus for the models tested was to predict returning students, the outcome was coded with students not returning as a " 0 " and students returning as a " 1 ". This focus meant results would predict the odds of whether the student would return one year later.

Model 1: Logistic Regression with Input Variables Only

The first model consisted of four steps (see Appendix: Logistic Regression Tables). The final step (step 4) of the first model showed the model correctly classified students in this cohort who returned 99.3% of the time and students who did not return 2.0% of the time for an overall classification rate of 74.7%.

For each variable included in the first model, a comparison group was selected (gender=male, race/ethnicity=multiracial, age=19 years old, region=rest of United States, high school GPA=3.0 or lower, first generation status=No, and ACT Composite score=19 or lower). In the first model (see Appendix: Logistic Regression Tables), high school GPA, age, race/ethnicity, and ACT Composite score were significant in the final step (step 4) of the model. The final step (step 4) of the first model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for African-American (1.259), Asian (533,057,388), NonResident Alien (2.165), White (1.016), and students of some other race/ethnicity (1.506) than for multiracial students.

When looking at the age of a student, the final step (step 4) of the first model showed the odds (Exp B) of a student returning was greater for a student of all other age groups (17 years or younger=2.699, 18 years old=1.539, 20 years or older=2.402) than for a student who was 19 years old. The confidence intervals (95\%) also indicated the odds of a student returning was greater for a student who was 17 years or younger or 18 years old than for a student who was 19 years old.

The final step (step 4) of the first model showed the odds ($\operatorname{Exp} B$) of a student returning was greater for a student in the two higher high school GPA comparison groups (3.01-3.5=1.530 and 3.51-4.0=2.823) than for a student with a high school GPA of 3.0 or lower. Additionally, the confidence intervals (95\%)
indicated the odds of a student returning was greater for a student in the two higher high school GPA comparison groups than for a student with a high school GPA of 3.0 or lower.

In addition, except for students with an ACT Composite score of 28-29, the final step (step 4) of the first model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student with an ACT Composite score of $24-25$ or higher ($24-25=1.271,26-27=1.334$, and 30 or higher=1.497) than for a student with an ACT Composite score of 19 or lower. However, the confidence intervals (95\%) did not indicate the odds of a student returning was greater for a student in any ACT Composite score comparison group higher than an ACT Composite score of 19 or lower.

Model 2: Logistic Regression with Input and Environmental Variables

The second model included the input and also the environmental variables. For each environmental variable included in the second model a comparison group was selected (number of USA Days attended=did not attend, orientation session attended=either the August Orientation session, a transfer orientation session, or an unknown orientation session, the college housing the major the student selected at initial enrollment in Fall 2017=Arts and Sciences, whether the student received a USA freshman scholarship=no, whether the student received some other type of scholarship=no, whether the student received a Pell Grant=no, whether the student lived on or off campus=off campus, whether the student participated in a learning community=no, whether the student took Freshman Seminar=no, and whether the student participated in Greek life=no).

The second model consisted of two steps (see Appendix: Logistic Regression Tables). In comparison to the first model, the correct classification rate for the second model slightly decreased to 96.3% for returning students while the classification rate for the second model increased to 12.0% for students who did not return. The overall correct classification rate for the second model was 75.0%.

Once again, high school GPA, age, race/ethnicity, and ACT Composite score were significant in the final step (step 2) of the second model (see Appendix: Logistic Regression Tables). In addition, participation in Greek life and the orientation session attended were significant in the final step (step 2) of the second model.

The final step (step 2) of the second model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for African-American (1.537), Asian (514,994,730), Non-Resident Alien (3.404), and students of some other race/ethnicity (1.446) than for multiracial students. When looking at the age of the student, the final step (step 2) of the second model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student of all other age groups (17 years or younger=2.569, 18 years old=1.383, 20 years or older=3.203) than for a student who was 19 years old. The confidence intervals (95\%) also indicated the odds of a student returning was greater for a student who was 17 years or younger than for a student who was 19 years old.

The final step (step 2) of the second model showed the odds ($\operatorname{Exp} B$) of a student returning was greater for a student in the two higher high school GPA comparison groups (3.01-3.5=1.487 and 3.51-4.0=2.618) than for a student with a high school GPA of 3.0 or lower. Additionally, the confidence intervals (95\%) indicated the odds of a student returning was greater for a student in the two higher high school GPA comparison groups than for a student with a high school GPA of 3.0 or lower.

A review of the ACT Composite score results in the final step (step 2) of the second model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student with an ACT Composite score of 24-25 (1.240) or 26-27 (1.313) than for a student with an ACT Composite score of 19 or lower. However, the confidence intervals (95\%) did not indicate the odds of a student returning was greater for a student in any ACT Composite score comparison group higher than an ACT Composite score of 19 or lower.

When looking at participation in Greek life, the final step (step 2) of the second model showed the odds (Exp B) of a student returning was greater for a student that participated in Greek life (3.011) than for a student that did not participate. The confidence intervals (95\%) also indicated the odds of a student returning was greater for a student that participated in Greek life than non-participants.

Finally, the final step (step 2) of the second model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student who attended all orientation sessions (May Orientation=2.198, Freshman Session 1=3.146, Freshman Session 2=1.587, Freshman Session 3=2.105, Freshman Session 4=2.057, Freshman Session 5=1.982, Freshman Session 6=1.316, Freshman Session 7=1.084, Freshman Session 8=1.488, and Freshman Session 9=1.142), except for Freshman Session 10, than for a student who attended either the August Orientation session, a transfer orientation session, or an unknown orientation session. In addition, the confidence intervals (95%) indicated the odds of a student returning was greater for a student who attended the Freshman Session 1, Freshman Session 3, Freshman Session 4, or Freshman Session 5 orientation than for a student who attended either the August Orientation session, a transfer orientation session, or an unknown orientation session.

Model 3, Model 4, and Model 5: Logistic Regression Outcome Variable Models

Since outcomes of student success are different from inputs (student characteristics or institutional/other support characteristics), the third, fourth, and fifth models only included outcomes of interest after the Fall 2017 semester had already begun. The third model included outcome variables known midway through or after the Fall 2017 semester ended (number of at-risk midterm grades in Fall 2017 and probation status after Fall 2017). The fourth model (number of hours earned after Summer 2018) and fifth model (USA GPA the student attained after Summer 2018) included a different outcome variable known after the Summer 2018 semester ended. The first and second models can be used based on data known before or at least early on after the student comes to campus. However, the third, fourth, and fifth models can only be used after the Fall 2017 semester (third model) or Summer 2018 semester (fourth and fifth models) ended.

Model 3: Logistic Regression with Variables Midway Through or After Fall 2017
The third model included variables known midway through or after Fall 2017. For each variable included in the third model a comparison group was selected (number of at-risk midterm grades in Fall 2017=four or more at-risk midterm grades and whether the student was placed on probation after Fall 2017=yes).

The third model (see Appendix: Logistic Regression Tables) consisted of two steps. In comparison to the first and second model, the correct classification rate for the third model slightly decreased to 93.1% for returning students. However, in comparison to the first and second model, the classification rate for the third model substantially increased to 40.0% for students who did not return since this snapshot included data known after the end of the Fall 2017 semester instead of pre-Fall 2017 semester data. The overall correct classification rate for the third model was 79.5%.

In the final step (step 2) of the third model, probation status after Fall 2017 and the number of at-risk midterm grades in Fall 2017 were significant (see Appendix: Logistic Regression Tables). The final step (step 2) of the third model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student who was not placed on probation after Fall 2017 (5.654) than for a student who was placed on probation after Fall 2017. The confidence intervals (95%) also supported this finding because the odds for a student returning was greater for a student who was not on probation after Fall 2017 than a student who was placed on probation after Fall 2017.

When looking at the number of at-risk (D, F, or U) midterm grades in Fall 2017, the final step (step 2) of the third model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student who had three or fewer at-risk midterm grades in Fall 2017 (three at-risk midterm grades=2.097, two at-risk midterm
grades=3.108, one at-risk midterm grade=2.814, no at-risk midterm grades=4.392) than for a student who had four or more at-risk midterm grades in Fall 2017. The confidence intervals (95\%) also indicated the odds of a student returning was greater for a student with three or fewer at-risk midterm grades in Fall 2017 than a student who had four or more at-risk midterm grades in Fall 2017.

Model 4: Logistic Regression with USA Hours Earned After Summer 2018 Variable The fourth model included the USA hours earned after the end of the Summer 2018 semester. The comparison group selected for the fourth model was zero to six hours earned after the end of the Summer 2018 semester. Since the fourth model only included one variable, the model consisted of one step (see Appendix: Logistic Regression Tables). The correct classification rate for the fourth model for returning students (95.7%) was slightly lower than the first and second models. However, in comparison to the other three models, the correct classification rate was much higher for students who did not return (66.5\%) since this snapshot included data known after the end of the Summer 2018 semester. The overall correct classification rate for the fourth model was 88.5%.

The fourth model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student with 6.5-12 or more hours earned $(6.5-12=2.437,12.5-18=3.624,18.5-24=30.420,24.5-30=79.595,30.5$ or more=217.734) than for a student with six or fewer hours earned at the end of Summer 2018 (see Appendix: Logistic Regression Tables). Additionally, the confidence intervals (95\%) indicated the odds of a student returning was greater for a student in the five higher USA hours earned comparison groups than for a student with zero to six USA hours earned.

Model 5: Logistic Regression with USA GPA After Summer 2018 Variable

The fifth model included the USA GPA after the end of the Summer 2018 semester. The comparison group selected for the fifth model was an USA GPA of 2.0 or lower after the end of the Summer 2018 semester. Since the fifth model only included one variable, the model consisted of one step (see Appendix: Logistic Regression Tables). The correct classification rate for the fifth model for returning students (93.8%) was similar to the third model and slightly lower than the other three models. The correct classification rate for the fifth model for students who did not return (51.8\%) was higher than the first, second, and third models since this snapshot included data known after the end of the Summer 2018 semester instead of pre-Fall 2017 semester data, but was lower than the fourth model. The overall correct classification rate for the fifth model was 83.5%.

The fifth model showed the odds (Exp B) of a student returning was greater for a student with an USA GPA of 2.01-2.5 or higher (2.01-2.5 $=8.721,2.51-3.0=12.095,3.01-3.5=18.482,3.51-4.0=24.935$) than for a student with an USA GPA of 2.0 or lower at the end of Summer 2018 (see Appendix: Logistic Regression Tables). In addition, the confidence intervals (95\%) indicated the odds of a student returning was greater for a student in the four higher USA GPA comparison groups than for a student with an USA GPA of 2.0 or lower.

Peer Comparisons

Finally, to better understand how USA one-year retention rates compared to peer institutions, the National Center for Education Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Data Center was used to compare USA one-year retention rates to the rates of 13 peer institutions (see Table 5). A retention rate trend over a period of five years based on the latest available retention rate data in IPEDS showed the USA retention rate was lower in comparison to most of these peer institutions. The USA one-year retention rate over this period ranged from a low of 66% for the 2011 freshman cohort to a high of 73% for the 2014 and 2015 freshman cohorts. The one-year retention rate of peer institutions over this same period ranged from a low of 62% for the University of New Orleans 2014 freshman cohort to a high of 88\% for the Florida International University 2014 and 2015 freshman cohorts.

Table 5: One-Year Retention Rate Peer Comparisons * Ranked by 2015 Cohort Retention Rate * High to Low

Institution Name	$\mathbf{2 0 1 5}$ Cohort Retention	$\mathbf{2 0 1 4}$ Cohort Retention	$\mathbf{2 0 1 3}$ Cohort Retention	$\mathbf{2 0 1 2}$ Cohort Retention	$\mathbf{2 0 1 1}$ Cohort Retention
Florida International University	88	88	84	84	82
University of Memphis	80	77	78	76	76
University of North Florida	80	80	83	82	83
University of North Texas	80	79	78	75	76
University of Massachusetts-Boston	79	78	80	77	79
Old Dominion University	78	82	81	80	80
Florida Atlantic University	77	78	75	77	78
Texas State University	77	78	76	77	76
University of Nebraska at Omaha	77	77	77	75	72
Indiana University-Purdue University-Indianapolis	74	74	71	72	72
University of South Alabama	73	73	71	68	66
University of Montana	69	73	73	73	74
University of Texas at Arlington	69	71	69	71	72
University of New Orleans	64	62	69	67	65

Source: National Center for Education Statistics IPEDS Data Center

Implications

Based on what we know about a student before the student steps foot on campus (input variables), oneyear retention of students with lower high school GPAs and students with lower ACT Composite scores is a concern. This prompts further reflection regarding admission standards and the allocation of resources to support at-risk students. In addition, students who are 19 years old or older may require additional resources and monitoring to enable and/or encourage them to persist towards successfully completing a degree at USA.

When we look at the institutional support and other support provided to a student (environmental variables), the orientation session students in the 2017 cohort attended provided a significant predictor of student retention, with students attending the earlier Freshman Summer orientation sessions more likely to return than students attending the later orientation sessions. The orientation session attended by students provides a key factor for identifying at-risk freshmen students early in their college experience.

Students who participated in Greek life at USA were more likely to return to USA. This emphasizes the importance of students becoming involved in student organizations at USA that allow them to connect with students with similar interests outside of the classroom as well.

The importance of financial support in the form of freshman scholarships or other types of scholarships was also clear. Additional USA freshman scholarships should be considered to continue to attract top students to attend USA. In addition, need-based grants could be utilized to assist students in greater need of financial support to encourage them to return to and persist towards completing a degree at USA.

Finally, results showed students who received four or more at-risk midterm grades (D, F, or U) in the Fall 2017 semester for lack of attendance and/or poor academic performance and students who were placed on probation after the Fall 2017 semester ended were unlikely to return to USA one year later. These findings highlight the importance of intervening prior to the end of the fall semester with students who receive an at-risk midterm grade to help prevent these students from subsequently receiving a low USA GPA and being placed on probation after the fall semester concludes.

Future Retention Research

This report is the first of two one-year retention studies about the 2017 freshman cohort that will be completed by the Office of Institutional Research during the Fall 2018 semester. The second retention study will use National Student Clearinghouse data to explore the issue of "Where did non-returning
freshmen in the 2017 cohort go?" This study will determine how many non-returning freshmen students transferred to another college or university or "stopped out" of college altogether.

APPENDIX

2017 Freshman Cohort Retention Report Cross Tabs

2017 Cohort * Gender * One-Year Retention Crosstabulation

			One-Year Retention		
			No	Yes	Total
Gender	Female	Count	273	873	1146
		\% within Gender	23.8%	76.2%	100.0%
	Male	Count	205	517	722
		\% within Gender	28.4%	71.6%	100.0%
Total	Count	478	1390	1868	
	\% within Gender	25.6%	74.4%	100.0%	

2017 Cohort * Race * One-Year Retention Crosstabulation

			One-Year	ention	
			No	Yes	Total
Race	White	Count	314	903	1217
		\% within Race	25.8\%	74.2\%	100.0\%
	African-American	Count	103	283	386
		\% within Race	26.7\%	73.3\%	100.0\%
	Asian	Count	0	34	34
		\% within Race	0.0\%	100.0\%	100.0\%
	Hispanic	Count	24	62	86
		\% within Race	27.9\%	72.1\%	100.0\%
	Multiracial	Count	22	55	77
		\% within Race	28.6\%	71.4\%	100.0\%
	Non-Resident Alien	Count	6	16	22
		\% within Race	27.3\%	72.7\%	100.0\%
	Other	Count	9	37	46
		\% within Race	19.6\%	80.4\%	100.0\%
Total		Count	478	1390	1868
		\% within Race	25.6\%	74.4\%	100.0\%

2017 Cohort * Age * One-Year Retention Crosstabulation

			One-Year	ention	
			No	Yes	Total
Age	17 years or younger	Count	18	101	119
		\% within Age	15.1\%	84.9\%	100.0\%
	18 years old	Count	405	1194	1599
		\% within Age	25.3\%	74.7\%	100.0\%
	19 years old	Count	42	70	112
		\% within Age	37.50\%	62.50\%	100.0\%
	20 years or older	Count	13	25	38
		\% within Age	34.2\%	65.8\%	100.0\%
Total		Count	478	1390	1868
		\% within Age	25.6\%	74.4\%	100.0\%

2017 Cohort * Region * One-Year Retention Crosstabulation

2017 Cohort * HS GPA Logistic * One-Year Retention Crosstabulation

			One-Year	ention	
			No	Yes	Total
HS GPA	3.0 or lower	Count	107	149	256
Logistic		\% within HS GPA Logistic	41.8\%	58.2\%	100.0\%
	3.01-3.5	Count	157	332	489
		\% within HS GPA Logistic	32.1\%	67.9\%	100.0\%
	3.51 or higher	Count	210	905	1115
		\% within HS GPA Logistic	18.8\%	81.2\%	100.0\%
Total		Count	474	1386	1860
		\% within HS GPA Logistic	25.48\%	74.52\%	100.0\%

2017 Cohort * ACT * One-Year Retention Crosstabulation

2017 Cohort * First Generation * One-Year Retention Crosstabulation

			One-Year Retention		
		Count	No	Yes	Total
First	No	\% within First Generation	380	1123	1503
		Count	25.3%	74.7%	100.0%
	Yes	\% within First Generation	98	267	365
		Count	26.8%	73.2%	100.0%
Total	\% within First Generation	478	1390	1868	
			25.6%	74.4%	100.0%

2017 Cohort * Number USA Days Attended * One-Year Retention Crosstabulation

Orientation * One-Year Retention Crosstabulation

2017 Cohort * Orientation Logistic * One-Year Retention Crosstabulation

2017 Cohort * College * One-Year Retention Crosstabulation

2017 Cohort * Freshman Scholarship * One-Year Retention Crosstabulation

			One-Year Retention		
		No	Yes	Total	
Freshman	No	Count	288	660	948
Scholarship	\% within Freshman Scholarship	30.4%	69.6%	100.0%	
		Count	190	730	920
	Yes	\% within Freshman Scholarship	20.7%	79.3%	100.0%
Total	Count	478	1390	1868	
		\% within Freshman Scholarship	25.6%	74.4%	100.0%

2017 Cohort * Other Scholarship * One-Year Retention Crosstabulation

2017 Cohort * Pell Grant * One-Year Retention Crosstabulation

2017 Cohort * Received Test Fee Waiver * One-Year Retention Crosstabulation

			One-Year Retention		
			No	Yes	Total
Received	No	Count	448	1317	1765
Test Fee	\% within Received Test Fee Waiver	25.4%	74.6%	100.0%	
Waiver	Yes	Count	30	73	103
		\% within Received Test Fee Waiver	29.1%	70.9%	100.0%
Total	Count	478	1390	1868	
		\% within Received Test Fee Waiver	25.6%	74.4%	100.0%

2017 Cohort * Housing * One-Year Retention Crosstabulation

2017 Cohort * Learning Community * One-Year Retention Crosstabulation

			One-Year Retention	
		No	Yes	Total
Learning	No	Count	134	311

2017 Freshman Cohort Retention Report Cross Tabs

2017 Cohort * Took Freshman Seminar * One-Year Retention Crosstabulation

			One-Year Retention	
			No	Yes
Total				
Took	No	Count	125	385
Freshman	\% within Took Freshman Seminar	510		
Seminar		Count	24.51%	75.49%
	Yes	\% within Took Freshman Seminar	100.0%	
Total	Count	353	1005	1358
		\% within Took Freshman Seminar	26.0%	74.0%

2017 Cohort * Greek Life Participation * One-Year Retention Crosstabulation

			One-Year Retention		
		No	Yes	Total	
Greek Life	No	Count	443	1135	1578
Participation	\% within Greek Life Participation	28.1%	71.9%	100.0%	
	Yes	Count	35	255	290
		\% within Greek Life Participation	12.1%	87.9%	100.0%
Total	Count	478	1390	1868	
		\% within Greek Life Participation	25.6%	74.4%	100.0%

2017 Cohort * Number At Risk Midterm Grades in Fall 2017 * One-Year Retention Crosstabulation

2017 Cohort * Probation After Fall 2017 * One-Year Retention Crosstabulation

			One-Year Retention		
			No	Yes	Total
Probation	No	Count	274	1292	1566
After Fall	\% within Probation After Fall 2017	17.50%	82.50%	100.0%	
2017	Yes	Count	204	98	302
	\% within Probation After Fall 2017	67.55%	32.45%	100.0%	
Total	Count	478	1390	1868	
		\% within Probation After Fall 2017	25.6%	74.4%	100.0%

2017 Cohort * USA Hours Earned After Summer 2018 * One-Year Retention Crosstabulation

		One-Year Retention		Total
		No	Yes	
USA Hours 0-6 hours	Count	117	10	127
Earned After	\% within USA Hours Earned After Summer	92.1\%	7.9\%	100.0\%
Summer 2018 6.5-12 hours	Count	72	15	87
	\% within USA Hours Earned After Summer	82.8\%	17.2\%	100.0\%
12.5-18 hours	Count	113	35	148
	\% within USA Hours Earned After Summer	76.4\%	23.6\%	100.0\%
18.5-24 hours	Count	45	117	162
	\% within USA Hours Earned After Summer	27.8\%	72.2\%	100.0\%
24.5-30 hours	Count	66	449	515
	\% within USA Hours Earned After Summer	12.8\%	87.2\%	100.0\%
30.5 or more hours	Count	41	763	804
	\% within USA Hours Earned After Summer	5.1\%	94.9\%	100.0\%
Total	Count	454	1389	1843
	\% within USA Hours Earned After Summer	24.6\%	75.4\%	100.0\%

2017 Cohort * USA GPA After Summer 2018 * One-Year Retention Crosstabulation

			One-Year	ention	
			No	Yes	Total
USA GPA	2.0 or lower	Count	235	86	321
After Summer		\% within USA GPA After Summer 2018	73.2\%	26.8\%	100.0\%
	2.01-2.5	Count	47	150	197
		\% within USA GPA After Summer 2018	23.9\%	76.1\%	100.0\%
	2.51-3.0	Count	61	270	331
		\% within USA GPA After Summer 2018	18.4\%	81.6\%	100.0\%
	3.01-3.5	Count	55	372	427
		\% within USA GPA After Summer 2018	12.9\%	87.1\%	100.0\%
	3.51-4.0	Count	56	511	567
		\% within USA GPA After Summer 2018	9.9\%	90.1\%	100.0\%
Total		Count	454	1389	1843
		\% within USA GPA After Summer 2018	24.6\%	75.4\%	100.0\%

2017 Cohort * Group Statistics

One-Year Retention		N	Mean	Std. Deviation	Std. Error Mean
Gender T-Test	No	478	. 57	. 495	. 023
	Yes	1390	. 63	. 483	. 013
First Generation	No	478	. 21	. 404	. 018
	Yes	1390	. 19	. 394	. 011
Freshman Scholarship		478	. 40	. 490	. 022
	Yes	1390	. 53	. 500	. 013
Other Scholarship	No	478	. 50	. 501	. 023
	Yes	1390	. 63	. 482	. 013
Pell Grant	No	478	. 47	. 500	. 023
	Yes	1390	. 40	. 489	. 013
Received Test Fee Waiver	No	478	. 06	. 243	. 011
	Yes	1390	. 05	. 223	. 006
Housing	No	478	. 60	. 491	. 022
	Yes	1390	. 61	. 489	. 013
Learning Community	No	478	. 72	. 450	. 021
	Yes	1390	. 78	. 417	. 011
Took Freshman Seminar	No	478	. 74	. 440	. 020
	Yes	1390	. 72	. 448	. 012
Greek Life Participation	No	478	. 07	. 261	. 012
	Yes	1390	. 18	. 387	. 010
Probation After Fall 2017	No	478	. 43	. 495	. 023
	Yes	1390	. 07	. 256	. 007

2017 Freshman Cohort Retention Report Independent T-Test Tables

2017 Cohort * Independent Samples Test

		Equality of Variances		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence		
		Lower							Upper		
Gender T-Test	Equal variances assumed Equal variances not assumed		14.422	. 000	$\begin{aligned} & -2.207 \\ & -2.180 \\ & \hline \end{aligned}$	$\begin{array}{r} 1866 \\ 810.750 \end{array}$	$\begin{aligned} & .027 \\ & .030 \end{aligned}$	$\begin{array}{\|c\|} \hline-.057 \\ -.057 \end{array}$	$\begin{aligned} & .026 \\ & .026 \\ & \hline \end{aligned}$	$\begin{aligned} & -.108 \\ & -.108 \end{aligned}$	$\begin{aligned} & -.006 \\ & -.006 \end{aligned}$
First Generation	Equal variances assumed Equal variances not assumed	1.482	. 224	$\begin{aligned} & \hline .615 \\ & .607 \end{aligned}$	$\begin{array}{r} 1866 \\ 810.193 \end{array}$	$\begin{aligned} & \hline .539 \\ & .544 \end{aligned}$	$\begin{aligned} & \hline .013 \\ & .013 \end{aligned}$	$\begin{aligned} & .021 \\ & .021 \end{aligned}$	$\begin{aligned} & \hline-.028 \\ & -.029 \\ & \hline \end{aligned}$.054 .055	
Freshman Scholarship	Equal variances assumed Equal variances not assumed	45.485	. 000	$\begin{aligned} & \hline-4.845 \\ & -4.891 \\ & \hline \end{aligned}$	$\begin{array}{r} 1866 \\ 842.135 \\ \hline \end{array}$	$\begin{aligned} & .000 \\ & .000 \end{aligned}$	$\begin{array}{\|c\|} \hline-.128 \\ -.128 \\ \hline \end{array}$.026 .026	$\begin{array}{\|c\|} \hline-.179 \\ -.179 \\ \hline \end{array}$	$\begin{array}{r}-.076 \\ -.076 \\ \hline\end{array}$	
Other Scholarship	Equal variances assumed Equal variances not assumed	36.391	. 000	$\begin{aligned} & \hline-5.236 \\ & -5.141 \end{aligned}$	$\begin{array}{r} 1866 \\ 801.934 \end{array}$	$\begin{aligned} & .000 \\ & .000 \end{aligned}$	$\begin{aligned} & -.135 \\ & -.135 \end{aligned}$		$\begin{aligned} & \hline-.186 \\ & -.187 \end{aligned}$	-. 085	
Pell Grant	Equal variances assumed Equal variances not assumed	18.585	. 000	$\begin{aligned} & \hline 3.009 \\ & 2.977 \end{aligned}$	$\begin{array}{r} 1866 \\ 812.826 \end{array}$	$\begin{aligned} & .003 \\ & .003 \end{aligned}$	$\begin{aligned} & \hline .078 \\ & .078 \end{aligned}$	$\begin{aligned} & .026 \\ & .026 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .027 \\ & .027 \end{aligned}$.130 .130	
Received Test Fee Waiver	Equal variances assumed Equal variances not assumed	2.835	. 092	$\begin{aligned} & \hline .846 \\ & .812 \\ & \hline \end{aligned}$	$\begin{array}{r} 1866 \\ 772.021 \end{array}$	$\begin{aligned} & \hline .398 \\ & .417 \\ & \hline \end{aligned}$	$\begin{aligned} & .010 \\ & .010 \\ & \hline \end{aligned}$.012 .013	-. 014	.034 .035	
Housing	Equal variances assumed Equal variances not assumed	. 593	. 442	$\begin{aligned} & \hline-.395 \\ & -.394 \end{aligned}$	$\begin{array}{r} 1866 \\ 824.269 \end{array}$	$\begin{aligned} & .693 \\ & .694 \end{aligned}$	$\begin{array}{\|c\|} \hline-.010 \\ -.010 \end{array}$	$\begin{aligned} & .026 \\ & .026 \end{aligned}$	$\begin{aligned} & -.061 \\ & -.061 \end{aligned}$.041 .041	
Learning Community	Equal variances assumed Equal variances not assumed	22.654	. 000	$\begin{aligned} & \hline-2.508 \\ & -2.418 \end{aligned}$	1866 777.396	$\begin{aligned} & .012 \\ & .016 \end{aligned}$	$\begin{aligned} & \hline-.057 \\ & -.057 \\ & \hline \end{aligned}$	$\begin{aligned} & .023 \\ & .023 \end{aligned}$	$\begin{aligned} & \hline-.101 \\ & -.103 \end{aligned}$	-.012 -.011	
Took Freshman Seminar	Equal variances assumed Equal variances not assumed	1.772	. 183	$\begin{aligned} & \hline .655 \\ & .660 \\ & \hline \end{aligned}$	$\begin{array}{r} 1866 \\ 840.611 \\ \hline \end{array}$	$\begin{aligned} & \hline .513 \\ & .509 \\ & \hline \end{aligned}$	$\begin{aligned} & .015 \\ & .015 \\ & \hline \end{aligned}$.024 .023	-. 031	.062 .061	
Greek Life Participation	Equal variances assumed Equal variances not assumed	166.442	. 000	$\begin{aligned} & \hline-5.789 \\ & -6.970 \end{aligned}$	$\begin{array}{r} 1866 \\ 1231.313 \end{array}$	$\begin{aligned} & .000 \\ & .000 \end{aligned}$	$\begin{aligned} & \hline-.110 \\ & -.110 \\ & \hline \end{aligned}$.019 .016	$\begin{array}{\|c\|} \hline-.148 \\ -.141 \end{array}$	-.073 -.079	
$\begin{aligned} & \text { Probation After Fall } \\ & 2017 \end{aligned}$	Equal variances assumed Equal variances not assumed	1221.503	. 000	$\begin{aligned} & \hline 20.124 \\ & 15.055 \\ & \hline \end{aligned}$	$\begin{array}{r} 1866 \\ 567.149 \\ \hline \end{array}$	$\begin{aligned} & .000 \\ & .000 \end{aligned}$	$\begin{array}{r} .356 \\ .356 \\ \hline \end{array}$	$\begin{aligned} & .018 \\ & .024 \\ & \hline \end{aligned}$	$\begin{aligned} & .322 \\ & .310 \\ & \hline \end{aligned}$.391 .403	

2017 Cohort * Race * Multiple Comparisons
Dependent Variable:
Games-Howell

(I) Race		Mean Difference$(\mathrm{I}-\mathrm{J})$	Std. Error	Sig.	Interval	
					Bound	Bound
White	African-American	. 009	. 026	1.000	-. 07	. 09
	Asian	-. $258{ }^{*}$. 013	. 000	-. 30	-. 22
	Hispanic	. 021	. 050	1.000	-. 13	. 17
	Multiracial	. 028	. 053	. 999	-. 13	. 19
	Non-Resident Alien	. 015	. 098	1.000	-. 30	. 33
	Other	-. 062	. 060	. 944	-. 25	. 12
African-American	White	-. 009	. 026	1.000	-. 09	. 07
	Asian	-. $267{ }^{*}$. 023	. 000	-. 33	-. 20
	Hispanic	. 012	. 054	1.000	-. 15	. 17
	Multiracial	. 019	. 057	1.000	-. 15	. 19
	Non-Resident Alien	. 006	. 100	1.000	-. 32	. 33
	Other	-. 071	. 063	. 918	-. 26	. 12
Asian	White	. $258{ }^{*}$. 013	. 000	. 22	. 30
	African-American	. $267 *$. 023	. 000	. 20	. 33
	Hispanic	. $279 *$. 049	. 000	. 13	. 43
	Multiracial	. $286{ }^{*}$. 052	. 000	. 13	. 44
	Non-Resident Alien	. 273	. 097	. 121	-. 04	. 59
	Other	. $196{ }^{*}$. 059	. 028	. 01	. 38
Hispanic	White	-. 021	. 050	1.000	-. 17	. 13
	African-American	-. 012	. 054	1.000	-. 17	. 15
	Asian	-. $279{ }^{*}$. 049	. 000	-. 43	-. 13
	Multiracial	. 007	. 071	1.000	-. 21	. 22
	Non-Resident Alien	-. 006	. 109	1.000	-. 35	. 34
	Other	-. 083	. 077	. 930	-. 31	. 15
Multiracial	White	-. 028	. 053	. 999	-. 19	. 13
	African-American	-. 019	. 057	1.000	-. 19	. 15
	Asian	-. $286{ }^{*}$. 052	. 000	-. 44	-. 13
	Hispanic	-. 007	. 071	1.000	-. 22	. 21
	Non-Resident Alien	-. 013	. 110	1.000	-. 36	. 33
	Other	-. 090	. 079	. 912	-. 33	. 15
Non-Resident Alien	White	-. 015	. 098	1.000	-. 33	. 30
	African-American	-. 006	. 100	1.000	-. 33	. 32
	Asian	-. 273	. 097	. 121	-. 59	. 04
	Hispanic	. 006	. 109	1.000	-. 34	. 35
	Multiracial	. 013	. 110	1.000	-. 33	. 36
	Other	-. 077	. 114	. 993	-. 43	. 28
Other	White	. 062	. 060	. 944	-. 12	. 25
	African-American	. 071	. 063	. 918	-. 12	. 26
	Asian	-. $196{ }^{*}$. 059	. 028	-. 38	-. 01
	Hispanic	. 083	. 077	. 930	-. 15	. 31
	Multiracial	. 090	. 079	. 912	-. 15	. 33
	Non-Resident Alien	. 077	. 114	. 993	-. 28	. 43

[^3]
2017 Freshman Cohort Retention Report ANOVA Tables

2017 Cohort * Age * Multiple Comparisons
Dependent Variable:
Games-Howell

(I) Age		Mean Difference$(\mathrm{I}-\mathrm{J})$	Std. Error	Sig.	Interval	
					Bound	Bound
17 years or younger	18 years old	. $102{ }^{*}$. 035	. 020	. 01	. 19
	19 years old	. $224{ }^{*}$. 057	. 001	. 08	. 37
	20 years or older	. 191	. 085	. 123	-. 03	. 42
18 years old	17 years or younger	-. 102^{*}	. 035	. 020	-. 19	-. 01
	19 years old	. 122	. 047	. 053	. 00	. 24
	20 years or older	. 089	. 079	. 675	-. 12	. 30
19 years old	17 years or younger	-. $224{ }^{*}$. 057	. 001	-. 37	-. 08
	18 years old	-. 122	. 047	. 053	-. 24	. 00
	20 years or older	-. 033	. 091	. 983	-. 27	. 21
20 years or older	17 years or younger	-. 191	. 085	. 123	-. 42	. 03
	18 years old	-. 089	. 079	. 675	-. 30	. 12
	19 years old	. 033	. 091	. 983	-. 21	. 27

*. The mean difference is significant at the 0.05 level.

2017 Cohort * Region * Multiple Comparisons

Dependent Variable:
Games-Howell

(I) Region		Mean Difference$(\mathrm{I}-\mathrm{J})$	Std. Error	Sig.	Interval	
					Bound	Bound
Mobile or Baldwin County	Rest of Alabama	. 010	. 023	. 998	-. 06	. 08
	Mississippi Service Area	-. 002	. 044	1.000	-. 13	. 13
	Florida Service Area	. 003	. 045	1.000	-. 13	. 13
	Rest of United States	. 024	. 038	. 988	-. 08	. 13
	International	. 023	. 098	1.000	-. 28	. 33
Rest of Alabama	Mobile or Baldwin County	-. 010	. 023	. 998	-. 08	. 06
	Mississippi Service Area	-. 012	. 045	1.000	-. 14	. 12
	Florida Service Area	-. 007	. 045	1.000	-. 14	. 12
	Rest of United States	. 014	. 038	. 999	-. 10	. 12
	International	. 013	. 099	1.000	-. 29	. 32
Mississippi Service Area	Mobile or Baldwin County	. 002	. 044	1.000	-. 13	. 13
	Rest of Alabama	. 012	. 045	1.000	-. 12	. 14
	Florida Service Area	. 005	. 059	1.000	-. 17	. 17
	Rest of United States	. 026	. 054	. 997	-. 13	. 18
	International	. 025	. 106	1.000	-. 30	. 35
Florida Service Area	Mobile or Baldwin County	-. 003	. 045	1.000	-. 13	. 13
	Rest of Alabama	. 007	. 045	1.000	-. 12	. 14
	Mississippi Service Area	-. 005	. 059	1.000	-. 17	. 17
	Rest of United States	. 021	. 055	. 999	-. 14	. 18
	International	. 020	. 106	1.000	-. 30	. 34
Rest of United States	Mobile or Baldwin County	-. 024	. 038	. 988	-. 13	. 08
	Rest of Alabama	-. 014	. 038	. 999	-. 12	. 10
	Mississippi Service Area	-. 026	. 054	. 997	-. 18	. 13
	Florida Service Area	-. 021	. 055	. 999	-. 18	. 14
	International	-. 001	. 103	1.000	-. 32	. 32
International	Mobile or Baldwin County	-. 023	. 098	1.000	-. 33	. 28
	Rest of Alabama	-. 013	. 099	1.000	-. 32	. 29
	Mississippi Service Area	-. 025	. 106	1.000	-. 35	. 30
	Florida Service Area	-. 020	. 106	1.000	-. 34	. 30
	Rest of United States	. 001	. 103	1.000	-. 32	. 32

2017 Cohort * High School GPA * Multiple Comparisons
Dependent Variable:
Games-Howell

		Mean Difference			Inte	
(I) HS GPA Log		(I-J)	Std. Error	Sig.	Bound	Bound
3.0 or lower	3.01-3.5	-.097*	. 037	. 027	-. 18	-. 01
	3.51 or higher	-.230*	. 033	. 000	-. 31	-. 15
3.01-3.5	3.0 or lower	. $097{ }^{*}$. 037	. 027	. 01	. 18
	3.51 or higher	-. $133{ }^{*}$. 024	. 000	-. 19	-. 08
3.51 or higher	3.0 or lower	. 230 *	. 033	. 000	. 15	. 31
	3.01-3.5	.133*	. 024	. 000	. 08	19

[^4]2017 Cohort * ACT Composite * Multiple Comparisons
Dependent Variable:
Games-Howell

(I) ACT		Mean Difference$(\mathrm{I}-\mathrm{J})$	Std. Error	Sig.	Interval	
					Bound	Bound
19 or lower	20-21	. 031	. 036	. 979	-. 08	. 14
	22-23	-. 006	. 036	1.000	-. 11	. 10
	24-25	-. 099	. 034	. 054	-. 20	. 00
	26-27	-. 111	. 039	. 068	-. 23	. 00
	28-29	-. 064	. 043	. 759	-. 19	. 06
	30 or higher	-. 144^{*}	. 038	. 003	-. 26	-. 03
20-21	19 or lower	-. 031	. 036	. 979	-. 14	. 08
	22-23	-. 036	. 035	. 947	-. 14	. 07
	24-25	-. 129^{*}	. 033	. 002	-. 23	-. 03
	26-27	-. 142^{*}	. 039	. 005	-. 26	-. 03
	28-29	-. 094	. 043	. 303	-. 22	. 03
	30 or higher	-. 174^{*}	. 038	. 000	-. 29	-. 06
22-23	19 or lower	. 006	. 036	1.000	-. 10	. 11
	20-21	. 036	. 035	. 947	-. 07	. 14
	24-25	-. 093	. 033	. 079	-. 19	. 01
	26-27	-. 105	. 039	. 094	-. 22	. 01
	28-29	-. 058	. 043	. 828	-. 19	. 07
	30 or higher	-. 138^{*}	. 037	. 005	-. 25	-. 03
24-25	19 or lower	. 099	. 034	. 054	. 00	. 20
	20-21	.129*	. 033	. 002	. 03	. 23
	22-23	. 093	. 033	. 079	-. 01	. 19
	26-27	-. 012	. 037	1.000	-. 12	. 10
	28-29	. 035	. 041	. 980	-. 09	. 16
	30 or higher	-. 045	. 036	. 871	-. 15	. 06
26-27	19 or lower	. 111	. 039	. 068	. 00	. 23
	20-21	$.142^{*}$. 039	. 005	. 03	. 26
	22-23	. 105	. 039	. 094	-. 01	. 22
	24-25	. 012	. 037	1.000	-. 10	. 12
	28-29	. 047	. 046	. 945	-. 09	. 18
	30 or higher	-. 032	. 041	. 985	-. 15	. 09
28-29	19 or lower	. 064	. 043	. 759	-. 06	. 19
	20-21	. 094	. 043	. 303	-. 03	. 22
	22-23	. 058	. 043	. 828	-. 07	. 19
	24-25	-. 035	. 041	. 980	-. 16	. 09
	26-27	-. 047	. 046	. 945	-. 18	. 09
	30 or higher	-. 080	. 045	. 561	-. 21	. 05
30 or higher	19 or lower	.144*	. 038	. 003	. 03	. 26
	20-21	. 174^{*}	. 038	. 000	. 06	. 29
	22-23	. $138{ }^{*}$. 037	. 005	. 03	. 25
	24-25	. 045	. 036	. 871	-. 06	. 15
	26-27	. 032	. 041	. 985	-. 09	. 15
	28-29	. 080	. 045	. 561	-. 05	. 21

*. The mean difference is significant at the 0.05 level.

2017 Cohort * USA Day * Multiple Comparisons
Dependent Variable:
Games-Howell

		Mean Difference			Inte	
(I) Number USA Days A	Attended	(I-J)	Std. Error	Sig.	Bound	Bound
Did Not Attend	Attended 1 USA Day	-.067*	. 022	. 008	-. 12	-. 01
	Attended Multiple USA Days	-. 073	. 108	. 780	-. 35	. 21
Attended 1 USA Day	Did Not Attend	.067*	. 022	. 008	. 01	. 12
	Attended Multiple USA Days	-. 006	. 109	. 998	-. 29	. 28
Attended Multiple USA	Did Not Attend	. 073	. 108	. 780	-. 21	. 35
Days	Attended 1 USA Day	. 006	. 109	. 998	-. 28	29

*. The mean difference is significant at the 0.05 level.

2017 Cohort * Orientation * Multiple Comparisons
Dependent Variable:
Games-Howell

(I) Orientation Logistic		Mean Difference (I-J)	Std. Error	Sig.	Interval	
					Bound	Bound
August/Transfer/Unkn own Orientation	May Orientation	-. 119	. 100	. 986	-. 47	. 23
	Freshman Session 1	-. $248{ }^{*}$. 049	. 000	-. 41	-. 09
	Freshman Session 2	-. 147	. 052	. 180	-. 32	. 03
	Freshman Session 3	-. 173^{*}	. 052	. 045	-. 34	. 00
	Freshman Session 4	-. $176{ }^{*}$. 052	. 037	-. 35	-. 01
	Freshman Session 5	-. 169	. 052	. 057	-. 34	. 00
	Freshman Session 6	-. 093	. 055	. 868	-. 27	. 09
	Freshman Session 7	-. 025	. 055	1.000	-. 21	. 16
	Freshman Session 8	-. 078	. 056	. 966	-. 26	. 11
	Freshman Session 9	-. 045	. 057	1.000	-. 23	. 14
	Freshman Session 10	-. 010	. 060	1.000	-. 21	. 19
Freshman Session 1	August/Transfer/Unknown Orientation	. $248 *$. 049	. 000	. 09	. 41
	May Orientation	. 128	. 093	. 959	-. 21	. 46
	Freshman Session 2	. 101	. 039	. 280	-. 03	. 23
	Freshman Session 3	. 075	. 038	. 707	-. 05	. 20
	Freshman Session 4	. 072	. 038	. 764	-. 05	. 20
	Freshman Session 5	. 078	. 038	. 660	-. 05	. 20
	Freshman Session 6	.155*	. 042	. 013	. 02	. 29
	Freshman Session 7	. $222{ }^{*}$. 042	. 000	. 08	. 36
	Freshman Session 8	.170*	. 044	. 008	. 02	. 32
	Freshman Session 9	. $203 *$. 045	. 001	. 05	. 35
	Freshman Session 10	.237*	. 048	. 000	. 08	. 40

*. The mean difference is significant at the 0.05 level.

2017 Cohort * College * Multiple Comparisons
Dependent Variable:
Games-Howell

(I) College Logistic		Mean Difference (I-J)	Std. Error	Sig.	Interval		
		Bound			Bound		
AS	AH		-. 104^{*}	. 029	. 006	-. 19	-. 02
	BU	. 019	. 040	. 999	-. 10	. 14	
	CS	-. 047	. 051	. 970	-. 20	. 11	
	ED	-. 055	. 036	. 721	-. 16	. 05	
	EG	-. 028	. 034	. 984	-. 13	. 07	
	NU	. 004	. 031	1.000	-. 09	. 10	
AH	AS	. $104{ }^{*}$. 029	. 006	. 02	. 19	
	BU	. 1244^{*}	. 041	. 046	. 00	. 25	
	CS	. 058	. 052	. 925	-. 10	. 21	
	ED	. 049	. 038	. 852	-. 06	. 16	
	EG	. 077	. 036	. 354	-. 03	. 18	
	NU	.108*	. 034	. 023	. 01	. 21	
BU	AS	-. 019	. 040	. 999	-. 14	. 10	
	AH	-. 124^{*}	. 041	. 046	-. 25	. 00	
	CS	-. 066	. 059	. 921	-. 24	. 11	
	ED	-. 075	. 047	. 678	-. 21	. 06	
	EG	-. 047	. 045	. 945	-. 18	. 09	
	NU	-. 016	. 043	1.000	-. 14	. 11	
CS	AS	. 047	. 051	. 970	-. 11	. 20	
	AH	-. 058	. 052	. 925	-. 21	. 10	
	BU	. 066	. 059	. 921	-. 11	. 24	
	ED	-. 009	. 056	1.000	-. 18	. 16	
	EG	. 019	. 056	1.000	-. 15	. 18	
	NU	. 050	. 054	. 966	-. 11	. 21	
ED	AS	. 055	. 036	. 721	-. 05	. 16	
	AH	-. 049	. 038	. 852	-. 16	. 06	
	BU	. 075	. 047	. 678	-. 06	. 21	
	CS	. 009	. 056	1.000	-. 16	. 18	
	EG	. 028	. 042	. 995	-. 10	. 15	
	NU	. 059	. 040	. 757	-. 06	. 18	
EG	AS	. 028	. 034	. 984	-. 07	. 13	
	AH	-. 077	. 036	. 354	-. 18	. 03	
	BU	. 047	. 045	. 945	-. 09	. 18	
	CS	-. 019	. 056	1.000	-. 18	. 15	
	ED	-. 028	. 042	. 995	-. 15	. 10	
	NU	. 031	. 039	. 983	-. 08	. 15	
NU	AS	-. 004	. 031	1.000	-. 10	. 09	
	AH	-. 108^{*}	. 034	. 023	-. 21	-. 01	
	BU	. 016	. 043	1.000	-. 11	. 14	
	CS	-. 050	. 054	. 966	-. 21	. 11	
	ED	-. 059	. 040	. 757	-. 18	. 06	
	EG	-. 031	. 039	. 983	-. 15	. 08	

[^5]
2017 Freshman Cohort Retention Report ANOVA Tables

2017 Cohort * Number of At Risk Midterm Grades * Multiple Comparisons
Dependent Variable:
Games-Howell

(I) Number At Risk Midterm Grades in Fall 2017		Mean Difference(I-J)	Std. Error	Sig.	Interval		
		Bound			Bound		
No At Risk MT Grades 1 At Risk MT Grade			. $106{ }^{*}$. 024	. 000	. 04	. 17
	2 At Risk MT Grades	.185*	. 034	. 000	. 09	. 28	
	3 At Risk MT Grades	. $342{ }^{*}$. 050	. 000	. 20	. 48	
	4 or More At Risk MT Grades	.601*	. 041	. 000	. 49	. 72	
1 At Risk MT Grade	No At Risk MT Grades	-. 106^{*}	. 024	. 000	-. 17	-. 04	
	2 At Risk MT Grades	. 079	. 039	. 255	-. 03	. 19	
	3 At Risk MT Grades	. $236 *$. 053	. 000	. 09	. 38	
	4 or More At Risk MT Grades	.495*	. 045	. 000	. 37	. 62	
2 At Risk MT Grades	No At Risk MT Grades	-. 185^{*}	. 034	. 000	-. 28	-. 09	
	1 At Risk MT Grade	-. 079	. 039	. 255	-. 19	. 03	
	3 At Risk MT Grades	. 157	. 059	. 062	. 00	. 32	
	4 or More At Risk MT Grades	. $416{ }^{*}$. 051	. 000	. 28	. 56	
3 At Risk MT Grades	No At Risk MT Grades	-. 342^{*}	. 050	. 000	-. 48	-. 20	
	1 At Risk MT Grade	-. $236{ }^{*}$. 053	. 000	-. 38	-. 09	
	2 At Risk MT Grades	-. 157	. 059	. 062	-. 32	. 00	
	4 or More At Risk MT Grades	. $259{ }^{*}$. 063	. 001	. 09	. 43	
4 or More At Risk MT Grades	No At Risk MT Grades	-.601*	. 041	. 000	-. 72	-. 49	
	1 At Risk MT Grade	-. $495{ }^{*}$. 045	. 000	-. 62	-. 37	
	2 At Risk MT Grades	-. 416^{*}	. 051	. 000	-. 56	-. 28	
	3 At Risk MT Grades	-.259*	. 063	. 001	-. 43	-. 09	

*. The mean difference is significant at the 0.05 level.

2017 Freshman Cohort Retention Report ANOVA Tables

2017 Cohort * USA Hours Earned After Summer 2018 * Multiple Comparisons
Dependent Variable:
Games-Howell

(I) USA Hours Earned After Summer 2018		Mean Difference$(\mathrm{I}-\mathrm{J})$	Std. Error	Sig.	Interval		
		Bound			Bound		
0-6 hours	6.5-12 hours		-. 094	. 047	. 358	-. 23	. 04
	12.5-18 hours	-. $158{ }^{*}$. 042	. 003	-. 28	-. 04	
	18.5-24 hours	-.643*	. 043	. 000	-. 77	-. 52	
	24.5-30 hours	-.793*	. 028	. 000	-. 87	-. 71	
	30.5 or more hours	-.870*	. 025	. 000	-. 94	-. 80	
6.5-12 hours	0-6 hours	. 094	. 047	. 358	-. 04	. 23	
	12.5-18 hours	-. 064	. 054	. 840	-. 22	. 09	
	18.5-24 hours	-. $550{ }^{*}$. 054	. 000	-. 70	-. 39	
	24.5-30 hours	-.699**	. 043	. 000	-. 83	-. 57	
	30.5 or more hours	-.777*	. 041	. 000	-. 90	-. 66	
12.5-18 hours	0-6 hours	. $158{ }^{*}$. 042	. 003	. 04	. 28	
	6.5-12 hours	. 064	. 054	. 840	-. 09	. 22	
	18.5-24 hours	-.486*	. 050	. 000	-. 63	-. 34	
	24.5-30 hours	-.635*	. 038	. 000	-. 74	-. 53	
	30.5 or more hours	-. $713{ }^{*}$. 036	. 000	-. 82	-. 61	
18.5-24 hours	0-6 hours	. $643{ }^{*}$. 043	. 000	. 52	. 77	
	6.5-12 hours	. $550{ }^{*}$. 054	. 000	. 39	. 70	
	12.5-18 hours	. $486{ }^{*}$. 050	. 000	. 34	. 63	
	24.5-30 hours	-. $150{ }^{*}$. 038	. 002	-. 26	-. 04	
	30.5 or more hours	-. $227{ }^{*}$. 036	. 000	-. 33	-. 12	
24.5-30 hours	0-6 hours	. $793{ }^{*}$. 028	. 000	. 71	. 87	
	6.5-12 hours	. $699{ }^{*}$. 043	. 000	. 57	. 83	
	12.5-18 hours	. 635^{*}	. 038	. 000	. 53	. 74	
	18.5-24 hours	. $150{ }^{*}$. 038	. 002	. 04	. 26	
	30.5 or more hours	-.077*	. 017	. 000	-. 12	-. 03	
30.5 or more hours	0-6 hours	.870*	. 025	. 000	. 80	. 94	
	6.5-12 hours	. $777{ }^{*}$. 041	. 000	. 66	. 90	
	12.5-18 hours	. $713{ }^{*}$. 036	. 000	. 61	. 82	
	18.5-24 hours	. $227 *$. 036	. 000	. 12	. 33	
	24.5-30 hours	. 077^{*}	. 017	. 000	. 03	. 12	

*. The mean difference is significant at the 0.05 level.

Dependent Variable:
Games-Howell

(I) USA GPA After Summer 2018		Mean Difference(I-J)	Std. Error	Sig.	Interval		
		Bound			Bound		
2.0 or lower	2.01-2.5		-.494*	. 039	. 000	-. 60	-. 39
	2.51-3.0	-.548*	. 033	. 000	-. 64	-. 46	
	3.01-3.5	-.603*	. 030	. 000	-. 68	-. 52	
	3.51-4.0	-.633*	. 028	. 000	-. 71	-. 56	
2.01-2.5	2.0 or lower	. $494{ }^{*}$. 039	. 000	. 39	. 60	
	2.51-3.0	-. 054	. 037	. 589	-. 16	. 05	
	3.01-3.5	-. 110^{*}	. 034	. 014	-. 20	-. 02	
	3.51-4.0	-. $140 *$. 033	. 000	-. 23	-. 05	
2.51-3.0	2.0 or lower	. $548{ }^{*}$. 033	. 000	. 46	. 64	
	2.01-2.5	. 054	. 037	. 589	-. 05	. 16	
	3.01-3.5	-. 055	. 027	. 235	-. 13	. 02	
	3.51-4.0	-.086*	. 025	. 005	-. 15	-. 02	
3.01-3.5	2.0 or lower	. $603{ }^{*}$. 030	. 000	. 52	. 68	
	2.01-2.5	$.110^{*}$. 034	. 014	. 02	. 20	
	2.51-3.0	. 055	. 027	. 235	-. 02	. 13	
	3.51-4.0	-. 030	. 021	. 586	-. 09	. 03	
3.51-4.0	2.0 or lower	. $633{ }^{*}$. 028	. 000	. 56	. 71	
	2.01-2.5	. $140{ }^{*}$. 033	. 000	. 05	. 23	
	2.51-3.0	. $086{ }^{*}$. 025	. 005	. 02	. 15	
	3.01-3.5	. 030	. 021	. 586	-. 03	. 09	

*. The mean difference is significant at the 0.05 level.

2017 Cohort * Input Model Classification Table ${ }^{\text {a }}$

Observed			Predicted		
			Retention		Percentage Correct
			No	Yes	
Step 1	One-Year Retention	No	0	458	0.0
		Yes	0	1354	100.0
	Overall Percentage				74.7
Step 2	One-Year Retention	No	10	448	2.2
		Yes	10	1344	99.3
	Overall Percentage				74.7
Step 3	One-Year Retention	No	9	449	2.0
		Yes	9	1345	99.3
	Overall Percentage				74.7
Step 4	One-Year Retention	No	9	449	2.0
		Yes	9	1345	99.3
	Overall Percentage				74.7

a. The cut value is .500

2017 Cohort * Input Model Final Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	EXP(B)		
		Lower						Upper		
Step $4^{\text {d }}$	Multiracial				4.173	6	. 653			
	African-American	. 231	. 294	. 616	1	. 432	1.259	. 708	2.240	
	Asian	20.094	6848.5	. 000	1	. 998	533057388	0.000		
	Hispanic	-. 059	. 366	. 026	1	. 872	. 943	. 460	1.932	
	Non-Resident Alien	. 773	. 726	1.132	1	. 287	2.165	. 522	8.987	
	Other	. 409	. 468	. 764	1	. 382	1.506	. 602	3.768	
	White	. 016	. 273	. 003	1	. 953	1.016	. 595	1.737	
	19 years old			9.483	3	. 024				
	17 years or younger	. 993	. 335	8.776	1	. 003	2.699	1.399	5.206	
	18 years old	. 431	. 216	3.966	1	. 046	1.539	1.007	2.352	
	20 years or older	. 876	. 614	2.040	1	. 153	2.402	. 722	7.998	
	HS GPA 3.0 or lower			43.133	2	. 000				
	HS GPA 3.01-3.5	. 425	. 168	6.429	1	. 011	1.530	1.101	2.125	
	HS GPA 3.51-4.0	1.038	. 168	38.228	1	. 000	2.823	2.032	3.923	
	ACT Composite 19 or lower			13.959	6	. 030				
	ACT Composite 20-21	-. 260	. 175	2.215	1	. 137	. 771	. 547	1.086	
	ACT Composite 22-23	-. 157	. 186	. 714	1	. 398	. 855	. 594	1.230	
	ACT Composite 24-25	. 240	. 206	1.357	1	. 244	1.271	. 849	1.904	
	ACT Composite 26-27	. 288	. 250	1.330	1	. 249	1.334	. 818	2.175	
	ACT Composite 28-29	-. 117	. 256	. 209	1	. 647	. 890	. 539	1.468	
	ACT Composite 30 or higher	. 403	. 273	2.186	1	. 139	1.497	. 877	2.555	
	Constant	-. 151	. 365	. 172	1	. 679	. 860			

a. Variable(s) entered on step 1: High School GPA.
b. Variable(s) entered on step 2: Age.
c. Variable(s) entered on step 3: Race/Ethnicity.
d. Variable(s) entered on step 4: ACT Composite score.

2017 Freshman Cohort Retention Report Logistic Regression Tables

2017 Cohort * Input and Environmental Model Classification Table ${ }^{\text {a }}$

Observed			Predicted		
			Retention		Percentage Correct
			No	Yes	
Step 1	One-Year Retention	No	35	423	7.6
		Yes	36	1318	97.3
	Overall Percentage				74.7
Step 2	One-Year Retention	No	55	403	12.0
		Yes	50	1304	96.3
	Overall Percentage				75.0

a. The cut value is .500

2017 Cohort * Input and Environmental Model Final Variables in the Equation

a. Variable(s) entered on step 1: Greek Life Participation.
b. Variable(s) entered on step 2: Orientation Session Attended.

2017 Freshman Cohort Retention Report Logistic Regression Tables

Observed			Predicted		
			Retention		Percentage Correct
			No	Yes	
Step 1	One-Year Retention	No	204	274	42.7
		Yes	98	1292	92.9
	Overall Percentage				80.1
Step 2	One-Year Retention	No	191	287	40.0
		Yes	96	1294	93.1
	Overall Percentage				79.5

a. The cut value is .500

2017 Cohort * Midway Through or After Fall 2017 Variables in the Equation

a. Variable(s) entered on step 1: Probation After Fall 2017.
b. Variable(s) entered on step 2: At-Risk Midterm Grades in Fall 2017.

2017 Cohort * USA Hours Earned After Summer 2018 Classification Table ${ }^{\text {a }}$

Observed			Predicted		
			Retention		Percentage Correct
			No	Yes	
Step 1	One-Year Retention	No	302	152	66.5
		Yes	60	1329	95.7
	Overall Percentage				88.5

a. The cut value is .500

2017 Cohort * USA Hours Earned After Summer 2018 Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	EXP(B)		
		Lower						Upper		
Step 1 ${ }^{\text {a }}$	USA Hours Earned 0-6				510.606	5	. 000			
	USA Hours Earned 6.5-12	. 891	. 435	4.198	1	. 040	2.437	1.039	5.716	
	USA Hours Earned 12.5-18	1.288	. 382	11.357	1	. 001	3.624	1.714	7.663	
	USA Hours Earned 18.5-24	3.415	. 373	83.715	1	. 000	30.420	14.637	63.222	
	USA Hours Earned 24.5-30	4.377	. 355	152.135	1	. 000	79.595	39.704	159.568	
	USA Hours Earned 30.5 or more	5.383	. 366	215.867	1	. 000	217.734	106.181	446.484	
	Constant	-2.460	. 329	55.732	1	. 000	. 085			

a. Variable(s) entered on step 1: USA Hours Earned After Summer 2018.

2017 Cohort * USA GPA After Summer 2018 Classification Table ${ }^{\text {a }}$

			Predicted		
			Retention		Percentage Correct
	Observed		No	Yes	
Step 1	One-Year Retention	No	235	219	51.8
		Yes	86	1303	93.8
	Overall Percentage				83.5

a. The cut value is .500

2017 Cohort * USA GPA After Summer 2018 Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	EXP(B)		
		Lower						Upper		
Step $1^{\text {a }}$	USA GPA 2.0 or lower				379.444	4	. 000			
	USA GPA 2.01-2.5	2.166	. 209	107.021	1	. 000	8.721	5.786	13.145	
	USA GPA 2.51-3.0	2.493	. 190	172.705	1	. 000	12.095	8.340	17.541	
	USA GPA 3.01-3.5	2.917	. 192	231.482	1	. 000	18.482	12.693	26.911	
	USA GPA 3.51-4.0	3.216	. 189	289.778	1	. 000	24.935	17.218	36.110	
	Constant	-1.005	. 126	63.621	1	. 000	. 366			

a. Variable(s) entered on step 1: USA GPA After Summer 2018.

[^0]: ${ }^{1}$ Astin, A. W. (2002). Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education. American Council on Education, Oryx Press.

[^1]: ${ }^{2}$ Input variables: Gender, race/ethnicity, age, region, first generation status, high school GPA, and ACT Composite score.
 ${ }^{3}$ Environmental variables: USA Day attendance, orientation session attended, college, USA freshman scholarship, other scholarship, Pell Grant, test fee waiver, housing, learning community, Freshman Seminar, and Greek life participation.
 ${ }^{4}$ Outcome/other variables after Fall 2017: Number of at-risk midterm grades received and probation status (model 3).
 ${ }^{5}$ Outcome variables after Summer 2018: USA hours earned (model 4) and USA GPA (model 5).

[^2]: ${ }^{6}$ Other scholarship includes third party private scholarships that are not considered a USA Freshman scholarship. Institutional Research

[^3]: *. The mean difference is significant at the 0.05 level.

[^4]: *. The mean difference is significant at the 0.05 level.

[^5]: *. The mean difference is significant at the 0.05 level.

