2013 Freshman Cohort Retention Report

Executive Summary

This report summarizes the retention of 1,825 students in the University of South Alabama (USA) 2013 first-time full-time baccalaureate degree-seeking freshman cohort. The retention rate for the 2013 freshman cohort was 71%.

Similar to earlier studies, results indicated that retention of students with a lower high school GPA and students with a lower ACT Composite score is a concern. Once again, students attending the earlier freshman summer orientation sessions were more likely to return than students attending the later orientation sessions. The importance of scholarships for students was clear. Freshmen who participated in a learning community or lived on campus were more likely to return to USA the following year. Results also showed students who received a JagAlert during the Fall 2013 semester in multiple courses for lack of attendance and/or poor academic performance and students who were placed on probation after the Fall 2013 semester ended were unlikely to return to USA one year later.

Overview

The following report provides a detailed analysis about the retention of the 1,825 first-time full-time baccalaureate degree-seeking freshmen students in the University of South Alabama (USA) 2013 freshman cohort. Retention in the context of this report is defined as whether freshmen students returned and enrolled one year later in the Fall 2014 semester. Similar to reports written by Institutional Research about the 2007 through 2012 freshman cohorts, the input-environment-outcome (IEO) model developed by Alexander W. Astin ${ }^{1}$ was used as a conceptual framework to guide this analysis.

Cross tabular results for each variable and whether the student returned are reported. Comparisons for each subgroup are made to the overall retention rate of the cohort (71\%). Significant mean differences for the input, environmental, and outcome variables are also indicated.

Additionally, five logistic regression models were tested. The first model included the input ${ }^{2}$ variables. The second model included the input and the environmental ${ }^{3}$ variables. The third model included two outcome variables known after the end of the Fall 2013 semester ${ }^{4}$. The fourth model and fifth model tested a different outcome variable known after the end of the Summer 2014 semester ${ }^{5}$. The predictive power of each model for explaining whether the student would return ($\mathrm{Yes} / \mathrm{No}$) is reported as well as which variables were significant in each of the five models.

[^0]
Cross Tabular Results

Cross tabular results for each variable and whether the student returned are summarized in the following section. Comparisons are made for each subgroup of the variable to the retention rate (71%) of the 1,825 freshmen in the cohort. These comparisons illustrate which subgroups of students returned at higher, similar, or lower rates than the overall cohort retention rate of 71%. In addition, significant mean differences for the input, environmental, and both sets of outcome variables (after Fall 2013 and after Summer 2014) are reported.

Input Variable Cross Tabular Results

For the input variables included in this analysis (see Table 1), female students (72\%) returned at a higher rate than male students (70\%). In terms of race/ethnicity, African-American students (69\%), and students included in the "Other" race/ethnicity subgroup ${ }^{6}$ (67%) returned at a rate lower than the cohort retention rate (71\%). The mean difference between retention of Non-Resident Alien students compared to students in the Multiracial, White, and African-American race/ethnicity subgroups was statistically significant (see Appendix: ANOVA Tables).

Table 1: Comparison of Input Variables to 2013 Cohort Retention Rate

Variable	Retention Rate >= 71\%	Count	Retention Rate < 71\%	Count
Gender				
	Female (72\%)	1,027	Male (70\%)	798
*Race/Ethnicity				
	*Non-Resident Alien (96\%)	23	African-American (69\%)	459
	Asian (82\%)	51	Other (67\%)	27
	Hispanic (74\%)	54		
	Multiracial (74\%)	65		
	White (71\%)	1,146		
Age				
	18 years old (72\%)	1,531	19 years old (69\%)	132
			17 years old or younger (68\%)	104
			20 years or older (66\%)	58
*Region				
	*International (96\%)	23	Mississippi Service Area (70\%)	165
	Mobile or Baldwin County (72\%)	798	Rest of United States (66\%)	122
	Rest of Alabama (71\%)	636	Florida Service Area (64\%)	81
*High School GPA				
	*3.51-4.0 (81\%)	835	3.01-3.5 (66\%)	546
			2.51-3.0 (59\%)	333
			2.5 or lower (44\%)	66
*ACT Composite Score				
	*30 or higher (82\%)	116	18 or lower (67\%)	208
	27-29 (77\%)	226	19-20 (65\%)	329
	24-26 (74\%)	394		
	21-23 (71\%)	420		
Note: *Significant mean difference at .05 p level based on Independent T-Test for two group comparisons or at least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.				

Retention comparisons based on age showed students who were 20 or older (66\%) returned at a lower rate than younger students. Comparisons based on what region the student came from showed that only

[^1]international students (96\%) and students from the Mobile or Baldwin County area (72\%) returned at a rate higher than the overall cohort (71\%). The mean difference between retention of international students compared to students from all other regions was statistically significant (see Appendix: ANOVA Tables).

Finally, for the most part, as high school GPA or ACT Composite score decreased, retention also decreased. Students who had a high school GPA ranging between 3.01-3.5 or lower returned at a rate lower than the rate for the overall cohort (71\%). Similarly, students who had an ACT Composite score of 19-20 or lower returned at a rate lower than the cohort retention rate (71%). The mean difference between retention of students with a high school GPA of 3.51 or higher in comparison to all other high school GPA groups was statistically significant (see Appendix: ANOVA Tables). The mean difference between retention of students with an ACT Composite score of 30 or higher in comparison to students with an ACT Composite score of 19-20 or lower was also statistically significant (see Appendix: ANOVA Tables).

Environmental Variable Cross Tabular Results

For the environmental variables included in this analysis, retention rates illustrated that receiving scholarships positively affected retention (see Table 2). Students receiving a USA freshman scholarship (78%) or some other type of scholarship ${ }^{7}$ (82%) returned at a rate higher than the cohort retention rate (71\%). Additionally, the mean difference between students who received a USA freshman scholarship compared to students who did not receive a USA freshman scholarship was statistically significant (see Appendix: Independent T-Test Tables). Similarly, the mean difference between students who received some other type of scholarship compared to students who did not receive this other type of scholarship was statistically significant (see Appendix: Independent T-Test Tables).

[^2]Table 2: Comparison of Environmental Variables to 2013 Cohort Retention Rate

Variable	Retention Rate >= 71\%	Count	Retention Rate < 71\%	Count
*USA Freshman Scholarship				
	*Yes (78\%)	960	No (63\%)	865
*Other Scholarship				
	*Yes (82\%)	235	No (69\%)	1,590
*Pell Grant				
	No (73\%)	1,062	*Yes (68\%)	763
*Housing				
	*On campus (73\%)	1,063	Off campus (68\%)	762
*Learning Community				
	*Yes (74\%)	839	No (69\%)	986
Freshman Seminar				
	No (72\%)	590		
	Yes (71\%)	1,235		
College ${ }^{8}$				
	Business (78\%)	138	Arts \& Sciences (69\%)	631
	Computing (76\%)	71		
	Education (72\%)	93		
	Nursing (72\%)	254		
	Allied Health (71\%)	353		
	Engineering (71\%)	282		
*Orientation Session				
	May Session (83\%)	40	Summer Session 5 (65\%)	217
	Summer Session 1 (79\%)	312	Summer Session 6 (61\%)	175
	Summer Session 2 (75\%)	307	*August/Other Orientation (59\%)	151
	Summer Session 3 (74\%)	327		
	Summer Session 4 (71\%)	296		

Note: *Significant mean difference at .05 p level based on Independent T-Test for two group comparisons or at least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

On the other hand, students receiving a Pell Grant (68\%) returned at a lower rate than the overall cohort (71\%). The mean difference between students who received a Pell Grant compared to students who did not receive a Pell Grant was statistically significant (see Appendix: Independent T-Test Tables).

Students who lived on campus (73\%) or participated in a learning community (74\%) returned at a higher rate than the overall cohort (71%). In both of these comparisons, the mean difference between retention of 1) students who lived on campus and students who did not live on campus and 2) students who participated in a learning community and students who did not participate in a learning community was statistically significant (see Appendix: Independent T-Test Tables).

A comparison of students who took freshman seminar (71\%) to students who did not take freshman seminar (72%) showed almost no difference in retention. Retention comparisons based on the college housing the major the student initially selected showed Business (78\%), Computing (76\%), Education (72\%), and Nursing (72\%) students returned at a higher rate than the overall cohort (71\%). However, no college based comparison was statistically significant (see Appendix: ANOVA Tables).

Finally, in terms of the orientation session attended, the retention rate of students who attended the May Orientation session or one of the first three Freshman Summer orientation sessions was higher than the

[^3]retention rate of the overall cohort (71\%). Retention rates based on the orientation session attended ranged from a high of 83% for students who attended the May orientation session to a low of 59% for students who attended either the August, Adult, a Transfer, or an unknown ${ }^{9}$ orientation session (AATU). When using the AATU students as a comparison group, there was a significant mean difference between the AATU group in comparison to the May orientation session and the first three Freshman Summer orientation sessions (see Appendix: ANOVA Tables).

Outcome Variable After Fall 2013 Cross Tabular Results

Outcome variables incorporated into this analysis included whether the student received a JagAlert during Fall 2013 and whether the student was placed on probation after Fall 2013 (see Table 3). Students who did not receive a JagAlert or who only received a JagAlert in one course during Fall 2013 returned at a higher rate (at least 75\%) than the overall cohort (71\%). The mean difference for students who did not receive a JagAlert during Fall 2013 compared to students who received a JagAlert during Fall 2013 in one or multiple courses was statistically significant (see Appendix: ANOVA Tables).

Table 3: Comparison of Outcome Variables After Fall 2013 to 2013 Cohort Retention Rate

Variable	Retention Rate >= 71\%	Count	Retention Rate < 71\%	Count
*Number of Courses with JagAlert during Fall 2013				
	*No JagAlert (83\%)	787	Multiple Course JagAlert (51\%)	538
	1 Course JagAlert (75\%)	500		
*Probation Status after Fall 2013				
	No (81\%)	1,443	*Yes (34\%)	382

Note: *At least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.

Students who were not on probation after Fall 2013 returned at a much higher rate (81\%) compared to students who were placed on probation after the Fall 2013 semester ended (34\%). The mean difference between students who were not on probation compared to students who were placed on probation was statistically significant (see Appendix: Independent T-Test Tables).

Outcome Variable After Summer 2014 Cross Tabular Results

Outcome variables incorporated into this analysis also included the number of hours earned after Summer 2014 at USA and the USA GPA after Summer 2014 (see Table 4). Unsurprisingly, as the number of USA hours earned increased the retention rate also increased. Similarly, students with a higher USA GPA were more likely to return than students with a lower USA GPA.

[^4]Table 4: Comparison of Outcome Variables After Summer 2014 to 2013 Cohort Retention Rate

Variable	Retention Rate >= 71\%	Count	Retention Rate < 71\%	Count
*USA Hours Earned after Summer 2014				
	*30.5 or more (96\%)	635	12.5-18 (43\%)	164
	24.5-30 (87\%)	466	6.5-12 (19\%)	138
	18.5-24 (72\%)	235	0-6 (11\%)	153
*USA GPA after Summer 2014				
	3.51-4.0 (90\%)	360	*2.0 or lower (37\%)	446
	3.01-3.5 (87\%)	396		
	2.51-3.0 (83\%)	328		
	2.01-2.5 (72\%)	261		
Note: *At least one group with significant mean difference at .05 p level based on Games-Howell procedure for multiple group comparisons. Significantly different group indicated by orange fill color. Comparison group indicated by "*" and gray fill color.				

Students who completed 18.5-24 or more hours at USA after Summer 2014 returned at a higher rate (at least 72\%) compared to students completing 12.5-18 or fewer hours (at most 43\%). The mean difference for students who completed 30.5 or more hours at USA compared to students in all other USA hours earned groups was statistically significant (see Appendix: ANOVA Tables).

Students with a USA GPA ranging between 2.01-2.5 or higher after Summer 2014 returned at a much higher rate (at least 72\%) compared to students with a USA GPA of 2.0 or lower (37\%). Furthermore, the mean difference for students who had a USA GPA of 2.0 or lower compared to students in all other USA GPA groups was statistically significant (see Appendix: ANOVA Tables).

Logistic Regression Results

The focus of this study was to determine which student characteristics (inputs) and environmental characteristics (institutional/other support characteristics) can be used to best predict the retention of USA freshmen students. Since the focus of this study was prediction and classification of a dichotomous outcome variable, stepwise logistic regression was used. This technique allows for the identification of significant variables that contribute to the classification of individuals by using an algorithm to determine the importance of predictor variables. Stepwise logistic regression was used to identify significant variables in the model for predicting the outcome variable. Results of the final step for the model are reported including the classification rate for the model. Additionally, an analysis of the proportionate change in odds for significant variables is provided.

As a part of this study, five logistic models were tested. The first model included the input variables. The second model included the input variables and the environmental variables. The third model tested two outcome variables known after the Fall 2013 semester: 1) whether the student received a JagAlert during Fall 2013 and 2) whether the student was placed on probation after Fall 2013 to see what happened when these outcomes were used as predictors of retention. The fourth and fifth models tested a different outcome variable known after the Summer 2014 semester. The fourth model tested the number of USA hours earned after Summer 2014 and the fifth model tested the USA GPA after Summer 2014 to see what happened when these outcomes were used as individual predictors of retention.

The number of students (selected cases) included in each model varied based on what variables were included in the final model. Some students in the cohort had missing data, typically high school GPA and/or ACT Composite score. Because complete cases were required to compute the results, the final number of students used for each model ranged from a low of 1,684 students for the first and second models to a high of 1,825 students for the third model. The retention rate for this subset of 1,684 students was 72%. With a similar retention rate (72% compared to 71%) and 1,684 students representing 92% of the entire cohort, the models tested provided a solid representation of retention for this population. Since
the focus for the models tested was to predict returning students, the outcome was coded with students not returning as a " 0 " and students returning as a " 1 ". This focus meant results would predict the odds of whether the student would return one year later.

Model 1: Logistic Regression with Input Variables Only

The first model consisted of only one step (see Table 5). The final step (step 1) of the first model showed the model correctly classified students in this cohort who returned 98.2% of the time and students who did not return 6.1% of the time for an overall classification rate of 72.1%.

Table 5: Input Model Classification Table ${ }^{a}$

				Predicte	
Observe			Retu		Percentage
			No	Yes	Correct
Step 1	Returned	No	29	448	6.1
		Yes	22	1185	98.2
	Overall Per	entage			72.1

a. The cut value is .500

For each variable included in the first model, a comparison group was selected (gender=male, race/ethnicity=White, age=20 years or older, region=Florida service area, high school GPA=2.5 or lower, and ACT Composite score=18 or lower). Values greater than " 1 " $(\operatorname{Exp} B)$ indicated the odds of the outcome (student returning) was higher compared to the selected comparison group. Values less than " 1 " indicated the odds of the outcome (student returning) was lower compared to the selected comparison group.

In the first model (see Table 6), high school GPA was significant in the first step. The first step of the model showed the odds ($\operatorname{Exp} B$) of a student returning was greater for a student in the three higher high school GPA comparison groups (2.51-3.0 $=1.875,3.01-3.5=2.659$, and $3.51-4.0=5.692$) than for a student with a high school GPA of 2.5 or lower. Additionally, the confidence intervals (95\%) indicated the odds of a student returning was greater for a student in the three higher high school GPA comparison groups than for a student with a high school GPA of 2.5 or lower since the confidence intervals for the three higher high school GPA comparison groups did not encompass an odds value less than one.

Table 6: Input Model Final Variables in the Equation

		B	S.E.	Wald	df	Sig.	$\operatorname{Exp}(B)$	$\begin{gathered} \text { 95\% C.I. for } \\ \text { EXP(B) } \end{gathered}$		
		Lower						Upper		
Step $1^{\text {a }}$	HS GPA 2.5 or lower				82.920	3	. 000			
	HS GPA 2.51-3.0	. 629	. 306	4.217	1	. 040	1.875	1.029	3.418	
	HS GPA 3.01-3.5	. 978	. 298	10.788	1	. 001	2.659	1.484	4.767	
	HS GPA 3.51-4.0	1.739	. 297	34.394	1	. 000	5.692	3.183	10.179	
	Constant	-. 276	. 283	. 955	1	. 329	. 759			

a. Variable(s) entered on step 1: HS GPA.

Model 2: Logistic Regression with Input and Environmental Variables

The second model included the input and also the environmental variables. For each environmental variable included in the second model a comparison group was selected (whether the student received a USA freshman scholarship=no, whether the student received some other type of scholarship=no, whether the student received a Pell Grant=no, whether the student lived on or off campus=off campus, whether the student participated in a learning community=no, whether the student took Freshman Seminar=no, which college housed the major the student selected at initial enrollment=Arts \& Sciences, and orientation session attended=either the August, Adult, a transfer, or an unknown orientation session).

The second model consisted of three steps (see Table 7). In comparison to the first model, the correct classification rate for the second model increased to 98.7% for returning students while the classification rate for the second model decreased to 5.0% for students who did not return. The overall correct classification rate for the second model was 72.1%.

Table 7: Input and Environmental Model Classification Table ${ }^{\text {a }}$

Observed		Predicted		
		Returned		Percentage Correct
		No	Yes	5.2
	Step 1	Returned	No	25
		Yes	452	98.7
		Overall Percentage	16	1191

a. The cut value is .500

Once again, high school GPA was significant in the final step (step 3) of the second model (see Table 8). In addition, received USA freshman scholarship, received some other type of scholarship, and housing on campus were significant in the final step of the second model (step 3).

Table 8: Input and Environmental Model Final Variables in the Equation

		B	S.E.	Wald	Df	Sig.	Exp(B)	$\begin{gathered} \text { 95\% C.I. for } \\ \text { EXP(B) } \\ \hline \end{gathered}$		
		Lower						Upper		
Step $1^{\text {a }}$	HS GPA 2.5 or lower				84.797	3	. 000			
	HS GPA 2.51-3.0	. 677	. 309	4.788	1	. 029	1.967	1.073	3.606	
	HS GPA 3.01-3.5	1.045	. 301	12.042	1	. 001	2.843	1.576	5.129	
	HS GPA 3.51-4.0	1.803	. 300	36.165	1	. 000	6.068	3.372	10.920	
	Received Other Scholarship	. 666	. 190	12.271	1	. 000	1.946	1.341	2.824	
	Constant	-. 409	. 288	2.023	1	. 155	. 664			
Step $2^{\text {b }}$	HS GPA 2.5 or lower			86.482	3	. 000				
	HS GPA 2.51-3.0	. 683	. 310	4.871	1	. 027	1.980	1.080	3.632	
	HS GPA 3.01-3.5	1.058	. 301	12.333	1	. 000	2.882	1.596	5.203	
	HS GPA 3.51-4.0	1.826	. 300	36.975	1	. 000	6.209	3.447	11.185	
	No Other Scholarship	. 657	. 190	11.898	1	. 001	1.929	1.328	2.802	
	Housing On Campus	. 271	. 113	5.782	1	. 016	1.312	1.051	1.636	
	Constant	-. 579	. 297	3.807	1	. 051	. 561			
Step 3 ${ }^{\text {c }}$	HS GPA 2.5 or lower			48.213	3	. 000				
	HS GPA 2.51-3.0	. 634	. 310	4.167	1	. 041	1.885	1.026	3.463	
	HS GPA 3.01-3.5	. 930	. 306	9.229	1	. 002	2.534	1.391	4.617	
	HS GPA 3.51-4.0	1.592	. 315	25.504	1	. 000	4.912	2.648	9.110	
	Received USA Freshman Scholarship	. 314	. 130	5.861	1	. 015	1.369	1.062	1.766	
	Received Other Scholarship	. 675	. 191	12.466	1	. 000	1.963	1.350	2.855	
	Housing On Campus	. 302	. 114	7.040	1	. 008	1.352	1.082	1.690	
	Constant	-. 608	. 297	4.185	1	. 041	. 544			

a. Variable(s) entered on step 1: Received Other Scholarship.
b. Variable(s) entered on step 2: Housing On Campus.
c. Variable(s) entered on step 3: Received USA Freshman Scholarship.

The final step (step 3) of the second model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student in the three higher high school GPA comparison groups (2.51-3.0=1.885, 3.01-3.5=2.534, and 3.51-4.0=4.912) than for a student with a high school GPA of 2.5 or lower. Additionally, the confidence intervals (95\%) indicated the odds of a student returning was greater for a student in the three higher high school GPA comparison groups than for a student with a high school GPA of 2.5 or lower since the confidence intervals for the three higher high school GPA comparison groups did not encompass an odds value less than one.

When considering the impact of USA freshman scholarships, the final step (step 3) of the second model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student who received a USA freshman scholarship (1.369) than for a student who did not receive a USA freshman scholarship. The confidence interval (95\%) also supported this finding because the odds for a student returning who received a USA freshman scholarship did not encompass an odds value less than one.

Similarly, a review of the impact of other scholarships showed in the final step (step 3) of the second model the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student who received some other type of scholarship (1.963) than for a student who did not receive some other type of scholarship. The confidence interval (95%) also supported this finding because the odds for a student returning who received some other type of scholarship did not encompass an odds value less than one.

Lastly, when considering the impact of housing, the final step (step 3) of the second model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student who lived in housing on campus (1.352) than for a student who did not live on campus. The confidence interval (95\%) also supported this finding because the odds for a student returning who lived in housing on campus did not encompass an odds value less than one.

Model 3, Model 4, and Model 5: Logistic Regression Outcome Variable Models

Since outcomes of student success are different from inputs (student characteristics or institutional/other support characteristics), the third, fourth, and fifth models only included outcomes of interest at two different points in time after the Fall 2013 semester had already begun. The third model included outcomes known after the Fall 2013 semester ended (number of courses the student received a JagAlert during Fall 2013 and probation status after Fall 2013). The fourth model (number of hours earned after Summer 2014) and fifth model (USA GPA the student attained after Summer 2014) included a different outcome variable known after the Summer 2014 semester ended. The first and second models can be used based on data known before or at least early on after the student comes to campus. However, the third, fourth, and fifth models can only be used after the Fall 2013 semester (third model) or Summer 2014 semester (fourth and fifth models) ended.

Model 3: Logistic Regression with Outcome Variables After Fall 2013
The third model included outcome variables known after Fall 2013. For each outcome variable included in the third model a comparison group was selected (JagAlert during Fall 2013=received a JagAlert in multiple courses and whether the student was placed on probation=yes).

The third model (see Table 9) consisted of two steps. In comparison to the first and second model, the correct classification rate for the third model decreased to 89.9% for returning students. However, in comparison to the previous two models, the classification rate for the third model dramatically increased to 47.5% for students who did not return since this snapshot included data known after the end of the Fall 2013 semester instead of pre-Fall 2013 semester data based on student characteristics and institutional or other support characteristics. The overall correct classification rate for the third model was 77.6%.

Table 9: End of Fall 2013 Outcome Model Classification Table ${ }^{\text {a }}$

Observed			Predicted		
			Returned		Percentage Correct
			No	Yes	
Step 1	Returned	No	251	277	47.5
		Yes	131	1166	89.9
	Overall Percentage				77.6
Step 2	Returned	No	251	277	47.5
		Yes	131	1166	89.9
	Overall Pe	entage			77.6

a. The cut value is .500

In the final step (step 2) of the third model, the probation status and JagAlert variables were significant (see Table 10). The final step (step 2) of the third model showed the odds $(\operatorname{Exp} B)$ of a student returning was much greater for a student who was not on probation (5.743) than for a student who was placed on probation after Fall 2013. The confidence interval (95\%) also supported this finding because the odds for a student returning who was not on probation did not encompass an odds value less than one.

The final step (step 2) of the third model also showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student who did not receive a JagAlert (2.267) and for a student who received a JagAlert in only one course (1.749) than for a student who received a JagAlert in multiple courses during Fall 2013. The confidence intervals (95\%) also supported this finding because the odds for a student returning who did not receive a JagAlert or who received a JagAlert in only one course did not encompass an odds value less than one.

Table 10: End of Fall 2013 Outcome Model Final Variables in the Equation

		B	S.E.	Wald	df	Sig.	$\operatorname{Exp}(\mathrm{B})$	$\begin{gathered} \text { 95\% C.I. for } \\ \text { EXP(B) } \end{gathered}$		
		Lower						Upper		
$\begin{aligned} & \text { Step } 1^{\mathrm{a}} \\ & \text { Step } 2^{\mathrm{b}} \end{aligned}$	Not On Probation After Fall 2013		2.088	. 127	270.926	1	. 000	8.065	6.290	10.341
	Constant	-. 650	. 108	36.396	1	. 000	. 522			
	Multiple Course JagAlert During Fall 2013			32.775	2	. 000				
	No JagAlert During Fall 2013	. 818	. 146	31.581	1	. 000	2.267	1.704	3.016	
	1 Course JagAlert During Fall 2013	. 559	. 148	14.215	1	. 000	1.749	1.308	2.339	
	Not On Probation After Fall 2013	1.748	. 138	159.307	1	. 000	5.743	4.378	7.533	
	Constant	-. 868	. 118	53.742	1	. 000	. 420			

a. Variable(s) entered on step 1: Probation Status After Fall 2013.
b. Variable(s) entered on step 2: Received JagAlert During Fall 2013.

Model 4: Logistic Regression with USA Hours Earned After Summer 2014 Outcome Variable

The fourth model included the USA hours earned after the end of the Summer 2014 semester. The comparison group selected for the fourth model was zero to six hours earned after the end of the Summer 2014 semester. Since the fourth model only included one variable, the model consisted of one step (see Table 11). The correct classification rate for the fourth model for returning students (91.3%) was lower than the first and second models, but higher than the third model. However, in comparison to the other three models, the correct classification rate was much higher for students who did not return (69.0\%) since this snapshot included data known after the end of the Summer 2014 semester instead of pre-Fall 2013 semester data based on student characteristics and institutional or other support characteristics. The overall correct classification rate for the fourth model was 85.1%.

Table 11: USA Hours Earned Outcome Model Classification Table ${ }^{\text {a }}$

Observed			Predicted		
			Returned		Percentage Correct
			No	Yes	
Step 1	Returned	No	343	154	69.0
		Yes	112	1182	91.3
	Overall Pe	entage			85.1

a. The cut value is .500

The fourth model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student with more hours earned ($6.5-12=1.988,12.5-18=6.376,18.5-24=21.925,24.5-30=55.794,30.5$ or more=200.560) than for a student with six or fewer hours earned at the end of Summer 2014 (see Table 12). Additionally, the confidence intervals (95%) indicated the odds of a student returning was greater for a student in the five higher USA hours earned comparison groups than for a student with zero to six USA hours earned since the confidence intervals for the five higher USA hours earned comparison groups did not encompass an odds value less than one.

Table 12: USA Hours Earned After Summer 2014 Model Final Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	95\% C.I.for EXP(B)		
		Lower						Upper		
Step $1^{\text {a }}$	USA Hours Earned 0-6				480.899	5	. 000			
	USA Hours Earned 6.5-12	. 687	. 342	4.027	1	. 045	1.988	1.016	3.888	
	USA Hours Earned 12.5-18	1.853	. 308	36.233	1	. 000	6.376	3.488	11.656	
	USA Hours Earned 18.5-24	3.088	. 301	104.916	1	. 000	21.925	12.144	39.585	
	USA Hours Earned 24.5-30	4.022	. 297	182.955	1	. 000	55.794	31.153	99.925	
	USA Hours Earned 30.5 or more	5.301	. 332	255.697	1	. 000	200.560	104.727	384.089	
	Constant	-2.147	. 264	66.065	1	. 000	. 117			

a. Variable(s) entered on step 1: USA Hours Earned After Summer 2014.

Model 5: Logistic Regression with USA GPA After Summer 2014 Outcome Variable
The fifth model included the USA GPA after the end of the Summer 2014 semester. The comparison group selected for the fifth model was an USA GPA of 2.0 or lower after the end of the Summer 2014 semester. Since the fifth model only included one variable, the model consisted of one step (see Table 13). The correct classification rate for the fifth model for returning students (87.2\%) was lower than the other four models. The correct classification rate for the fifth model for students who did not return (56.5\%) was higher than the first, second, and third models, but lower than the fourth model. The overall correct classification rate for the fifth model was 78.7%.

Table 13: USA GPA Outcome Model Classification Table ${ }^{\text {a }}$

Observed		Predicted		
		Returned		Percentage Correct
		No	Yes	
Step 1	Returned	No	281	216
		Yes	165	1129

a. The cut value is .500

The fifth model showed the odds $(\operatorname{Exp} B)$ of a student returning was greater for a student with a higher USA GPA (2.01-2.5=4.386, 2.51-3.0=8.097, 3.01-3.5=11.520, 3.51-4.0 $=15.814$) than for a student with an USA GPA of 2.0 or lower at the end of Summer 2014 (see Table 14). In addition, the confidence intervals (95\%) indicated the odds of a student returning was greater for a student in the four higher USA GPA comparison groups than for a student with an USA GPA of 2.0 or lower since the confidence Institutional Research
intervals for the four higher USA GPA comparison groups did not encompass an odds value less than one.

Table 14: USA GPA After Summer 2014 Model Final Variables in the Equation

		B	S.E.	Wald	df	Sig.	Exp(B)	95\% C.I.for EXP(B)		
		Lower						Upper		
Step $1^{\text {a }}$	USA GPA 2.0 or lower				332.201	4	. 000			
	USA GPA 2.01-2.5	1.478	. 169	76.322	1	. 000	4.386	3.148	6.111	
	USA GPA 2.51-3.0	2.091	. 176	141.777	1	. 000	8.097	5.739	11.424	
	USA GPA 3.01-3.5	2.444	. 179	185.950	1	. 000	11.520	8.108	16.370	
	USA GPA 3.51-4.0	2.761	. 203	184.709	1	. 000	15.814	10.620	23.548	
	Constant	-. 532	. 098	29.468	1	. 000	. 587			

a. Variable(s) entered on step 1: USA GPA After Summer 2014.

Peer Comparisons

Finally, to gain a better idea about how USA retention rates compared to retention at peer institutions, the National Center for Education Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Data Center was used to compare USA retention rates to 13 peer institutions (see Table 15). A five year retention rate trend based on the latest available retention rate data in IPEDS showed the USA retention rate was low compared to the other peer institutions over this five year time period. The USA retention rate over this five year time period ranged from a low of 65% for the 2010 freshman cohort to a high of 67% for the 2007 and 2008 freshman cohorts. The retention rate of peer institutions over this five year time period ranged from a low of 60% for the University of Texas at Arlington 2007 freshman cohort to a high of 83\% for the Florida International University 2009 freshman cohort and the University of North Florida 2008, 2009, and 2011 freshman cohorts.

Table 15: Five Year Retention Rate Peer Comparisons * Ranked by 2011 Cohort Retention Rate * High to Low

Institution Name	$\mathbf{2 0 1 1}$ Cohort Retention	$\mathbf{2 0 1 0}$ Cohort Retention	$\mathbf{2 0 0 9}$ Cohort Retention	$\mathbf{2 0 0 8}$ Cohort Retention	$\mathbf{2 0 0 7}$ Cohort Retention
University of North Florida	83	81	83	83	78
Florida International University	82	82	83	81	81
Old Dominion University	80	80	80	80	80
University of Massachusetts-Boston	79	75	75	77	75
Florida Atlantic University	78	79	80	79	75
Texas State University - San Marcos	76	79	79	79	77
University of Memphis	76	77	78	76	75
University of North Texas	76	78	78	76	75
The University of Montana	74	72	74	73	72
Indiana University-Purdue University-Indianapolis	72	72	74	72	68
University of Texas at Arlington	72	71	70	65	60
University of Nebraska at Omaha	72	73	73	72	69
University of South Alabama	66	65	66	67	67
University of New Orleans	65	67	64	69	69

Source: National Center for Education Statistics IPEDS Data Center

Implications

Based on what we know about a student before the student steps foot on campus (input variables), retention of students with lower high school GPAs and students with lower ACT Composite scores is a concern. This prompts further reflection regarding admission standards and the allocation of resources to support at risk students.

When we look at the institutional support and other support provided to a student (environmental variables), just like with the 2007 through 2012 freshman cohorts, the orientation session students in the 2013 cohort attended provided a significant predictor of student retention, with students attending the earlier Freshman Summer orientation sessions more likely to return than students attending the later orientation sessions. The orientation session attended by students continues to provide a key factor for identifying at-risk freshmen students early in their college experience.

Previous Institutional Research studies have looked at the contribution of USA freshman scholarships to recruitment and retention goals. As with earlier studies, the importance of awarding USA freshman scholarships for students was clear. Additional USA freshman scholarships should also be considered in order to attract top students to the institution since the data suggests students with USA freshman scholarships are more likely to return to continue their studies at USA the following year.

This annual retention study also compared retention of freshmen who participated in a learning community to freshmen who did not participate in a learning community. Freshmen who participated in a learning community were significantly more likely to return to USA the following year. Additionally, freshmen who lived on campus were also significantly more likely to return to USA. Therefore, expanding the number of learning communities for freshmen to participate in and on campus housing for freshmen to live in should also receive further consideration.

Finally, results showed students who received a JagAlert during the Fall 2013 semester in multiple courses for lack of attendance and/or poor academic performance were unlikely to return to USA one year later. A JagAlert is recorded in the middle of the semester which allows time to intervene before the semester concludes. As a result, interventions to assist students who receive a JagAlert are also important, because students who were placed on probation after the Fall 2013 semester ended (34\%) or who had a USA GPA of 2.0 or lower due to poor academic performance after the Summer 2014 semester was completed (37\%) were less likely to return to USA one year later than students who received a JagAlert in multiple courses during the Fall 2013 semester (51\%).

Future Retention Research

This report is the first of two retention studies about the 2013 freshman cohort that will be completed by the Office of Institutional Research during the Fall 2014 semester. The second retention study will use National Student Clearinghouse data to explore the issue of "Where did non-returning freshmen in the 2013 cohort go?" This study will determine how many non returning freshmen students transferred to another college or university or "stopped out" of college altogether.

Appendix

Independent T-Test Tables

Gender * Group Statistics

Gender * Group Statistics						
Returned	Gender T-Test	N	Mean	Std. Deviation	Std. Error Mean	
	Male	798	.70	.459	.016	
	Female	1027	.72	.449	.014	

Gender * Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
$\begin{aligned} & \text { Returned } \text { Equal variances assumed } \\ & \text { Equal variances not assumed }\end{aligned}$	4.379	. 037	$\begin{aligned} & -1.054 \\ & -1.051 \\ & \hline \end{aligned}$	$\begin{array}{r} 1823 \\ 1694.054 \\ \hline \end{array}$	$\begin{array}{r} .292 \\ .294 \\ \hline \end{array}$	$\begin{array}{r} -.023 \\ -.023 \\ \hline \end{array}$	$\begin{aligned} & .021 \\ & .021 \\ & \hline \end{aligned}$	$\begin{array}{r} -.065 \\ -.065 \\ \hline \end{array}$	$\begin{array}{r} .019 \\ .020 \\ \hline \end{array}$

USA Freshman Scholarship * Group Statistics

	USA Freshman Scholarship	N	Mean	Std. Deviation	Std. Error Mean
Returned	No	865	.63	.482	.016
	Yes	960	.78	.415	.013

USA Freshman Scholarship * Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
Returned Equal variances assumed variances not assumed	179.619	. 000	$\begin{array}{l\|} \hline-6.881 \\ -6.828 \\ \hline \end{array}$	$\begin{array}{r} 1823 \\ 1714.902 \\ \hline \end{array}$	$\begin{aligned} & .000 \\ & .000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-.144 \\ & -.144 \end{aligned}$	$\begin{aligned} & .021 \\ & .021 \end{aligned}$	-. 186	-.103 -.103

Other Scholarship * Group Statistics

	Other Scholarship	N	Mean	Std. Deviation	Std. Error Mean
Returned	No	1590	.69	.461	.012
	Yes	235	.82	.384	.025

Other Scholarship * Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
Returned Equal variances assumed Equal variances not assumed	98.061	. 000	$\begin{aligned} & -4.021 \\ & -4.602 \\ & \hline \end{aligned}$	$\begin{array}{r} 1823 \\ 341.976 \\ \hline \end{array}$	$\begin{aligned} & .000 \\ & .000 \\ & \hline \end{aligned}$	$\begin{array}{r} -.127 \\ -.127 \\ \hline \end{array}$	$\begin{array}{r} .032 \\ .028 \\ \hline \end{array}$	-.189 -.181	$\begin{array}{r} -.065 \\ -.073 \\ \hline \end{array}$

Pell Grant * Group Statistics										
Pell Grant							N	Mean	Std. Deviation	Std. Error Mean
Returned	No	1062	.73	.443	.014					
	Yes	763	.68	.467	.017					

Pell Grant * Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
Returned Equal variances assumed Equal variances not assumed	22.727	. 000	$\begin{aligned} & \hline 2.436 \\ & 2.415 \end{aligned}$	$\begin{array}{r} 1823 \\ 1589.076 \end{array}$	$\begin{aligned} & \hline .015 \\ & .016 \end{aligned}$	$\begin{aligned} & .052 \\ & .052 \end{aligned}$	$\begin{aligned} & \hline .021 \\ & .022 \end{aligned}$	$\begin{aligned} & .010 \\ & .010 \\ & \hline \end{aligned}$	$\begin{aligned} & .095 \\ & .095 \end{aligned}$

Housing * Group Statistics

	Housing	N	Mean	Std. Deviation	Std. Error Mean
Returned	Off Campus	762	.68	.466	.017
	On Campus	1063	.73	.444	.014

Housing * Independent Samples Test

Learning Community * Group Statistics

	Learning Community	N	Mean	Std. Deviation	Std. Error Mean
Returned	No	986	.69	.464	.015
	Yes	839	.74	.439	.015

Learning Community * Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
Returne Equal variances assumed d Equal variances not assumed	24.676	. 000	$\begin{aligned} & \hline-2.461 \\ & -2.472 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 1823 \\ 1802.317 \\ \hline \end{array}$	$\begin{aligned} & \hline .014 \\ & .014 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-052 \\ & -.052 \\ & \hline \end{aligned}$	$\begin{aligned} & .021 \\ & .021 \\ & \hline \end{aligned}$	-.094 -.094	$\begin{array}{r} \hline-.011 \\ -.011 \\ \hline \end{array}$

Freshman Seminar * Group Statistics

	Took Freshman Seminar	N	Mean	Std. Deviation	Std. Error Mean
Returned	No	590	.72	.450	.019
	Yes	1235	.71	.455	.013

Freshman Seminar * Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
Returned Equal variances assumed Equiances not assumed	1.095	. 296	$\begin{array}{r} .518 \\ .520 \\ \hline \end{array}$	$\begin{array}{r} 1823 \\ 1172.241 \\ \hline \end{array}$	$\begin{array}{r} .604 \\ .603 \\ \hline \end{array}$	$\begin{aligned} & .012 \\ & .012 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .023 \\ & .023 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline .033 \\ -.033 \\ \hline \end{array}$	$\begin{array}{r} .056 \\ .056 \\ \hline \end{array}$

Probation After Fall 2013 * Group Statistics

	Probation After Fall 2013	N	Mean	Std. Deviation	Std. Error Mean
Returned	No	1443	.81	.394	.010
	Yes	382	.34	.475	.024

Probation After Fall 2013 * Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	95\% Confidence Interval of the Difference	
								Lower	Upper
Returned Equal variances assumed Equal variances not assumed	$\begin{array}{r} \hline 116.20 \\ 8 \end{array}$. 000	$\begin{aligned} & 19.605 \\ & 17.592 \end{aligned}$	$\begin{array}{r} 1823 \\ 527.586 \end{array}$	$\begin{aligned} & .000 \\ & .000 \\ & \hline \end{aligned}$.465 .465	.024 .026	.419 .413	.512 .517

ANOVA Tables

Race * Multiple Comparisons
Dependent Variable: Returned
Games-Howell

(I) Race	(J) Race	Games-Howell				
		MeanDifference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
White	African-American	. 019	. 025	. 989	-. 06	. 09
	Asian	-. 116	. 056	. 375	-. 29	. 05
	Hispanic	-. 033	. 062	. 998	-. 22	. 16
	Multiracial	-. 031	. 057	. 998	-. 20	. 14
	Non-Resident Alien	-. $249{ }^{*}$. 046	. 000	-. 39	-. 10
	Other	. 041	. 093	. 999	-. 26	. 34
African-American	White	-. 019	. 025	. 989	-. 09	. 06
	Asian	-. 135	. 058	. 248	-. 31	. 04
	Hispanic	-. 052	. 064	. 982	-. 25	. 14
	Multiracial	-. 050	. 059	. 979	-. 23	. 13
	Non-Resident Alien	-. $268{ }^{*}$. 049	. 000	-. 42	-. 12
	Other	. 022	. 095	1.000	-. 28	. 32
Asian	White	. 116	. 056	. 375	-. 05	. 29
	African-American	. 135	. 058	. 248	-. 04	. 31
	Hispanic	. 083	. 081	. 947	-. 16	. 33
	Multiracial	. 085	. 077	. 925	-. 15	. 32
	Non-Resident Alien	-. 133	. 069	. 474	-. 34	. 08
	Other	. 157	. 107	. 763	-. 17	. 49
Hispanic	White	. 033	. 062	. 998	-. 16	. 22
	African-American	. 052	. 064	. 982	-. 14	. 25
	Asian	-. 083	. 081	. 947	-. 33	. 16
	Multiracial	. 002	. 081	1.000	-. 24	. 25
	Non-Resident Alien	-. 216	. 074	. 069	-. 44	. 01
	Other	. 074	. 110	. 994	-. 27	. 41
Multiracial	White	. 031	. 057	. 998	-. 14	. 20
	African-American	. 050	. 059	. 979	-. 13	. 23
	Asian	-. 085	. 077	. 925	-. 32	. 15
	Hispanic	-. 002	. 081	1.000	-. 25	. 24
	Non-Resident Alien	-. 218^{*}	. 070	. 040	-. 43	-. 01
	Other	. 072	. 108	. 994	-. 26	. 40
Non-Resident Alien	White	. 249 *	. 046	. 000	. 10	. 39
	African-American	. $268{ }^{*}$. 049	. 000	. 12	. 42
	Asian	. 133	. 069	. 474	-. 08	. 34
	Hispanic	. 216	. 074	. 069	-. 01	. 44
	Multiracial	. $218{ }^{*}$. 070	. 040	. 01	. 43
	Other	. 290	. 102	. 095	-. 03	. 61
Other	White	-. 041	. 093	. 999	-. 34	. 26
	African-American	-. 022	. 095	1.000	-. 32	. 28
	Asian	-. 157	. 107	. 763	-. 49	. 17
	Hispanic	-. 074	. 110	. 994	-. 41	. 27
	Multiracial	-. 072	. 108	. 994	-. 40	. 26
	Non-Resident Alien	-. 290	. 102	. 095	-. 61	. 03

*. The mean difference is significant at the 0.05 level.

Age * Multiple Comparisons
Dependent Variable: Returned
Games-Howell

(I) Age		Mean Logistic		Std.		95\% Confidence Interval	
	(J) Age Logistic	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound	
20 years	17 years or younger	-.028	.078	.985	-.23	.18	
or older	18 years old	-.061	.064	.773	-.23	.11	
	19 years old	-.034	.075	.968	-.23	.16	
17 years	20 years or older	.028	.078	.985	-.18	.23	
or	18 years old	-.034	.047	.891	-.16	.09	
younger	19 years old	-.007	.061	1.000	-.16	.15	
18 years	20 years or older	.061	.064	.773	-.11	.23	
old	17 years or younger	.034	.047	.891	-.09	.16	
	19 years old	.027	.042	.917	-.08	.14	
19 years	20 years or older	.034	.075	.968	-.16	.23	
old	17 years or younger	.007	.061	1.000	-.15	.16	
	18 years old	-.027	.042	.917	-.14	.08	

Region * Multiple Comparisons
Dependent Variable: Returned
Games-Howell

(I) Region	(J) Region	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Mobile or Baldwin County	Rest of Alabama	. 004	. 024	1.000	-. 06	. 07
	Mississippi Service Area	. 015	. 039	. 999	-. 10	. 13
	Florida Service Area	. 076	. 056	. 750	-. 09	. 24
	Rest of United States	. 062	. 046	. 755	-. 07	. 20
	International	-.238*	. 046	. 000	-. 38	-. 10
Rest of Alabama	Mobile or Baldwin County	-. 004	. 024	1.000	-. 07	. 06
	Mississippi Service Area	. 011	. 040	1.000	-. 10	. 13
	Florida Service Area	. 072	. 057	. 800	-. 09	. 24
	Rest of United States	. 058	. 047	. 815	-. 08	. 19
	International	-. $243{ }^{*}$. 047	. 000	-. 39	-. 10
Mississippi Service Area	Mobile or Baldwin County	-. 015	. 039	. 999	-. 13	. 10
	Rest of Alabama	-. 011	. 040	1.000	-. 13	. 10
	Florida Service Area	. 061	. 064	. 933	-. 12	. 25
	Rest of United States	. 047	. 056	. 959	-. 11	. 21
	International	-. $253{ }^{*}$. 056	. 000	-. 42	-. 09
Florida Service Area	Mobile or Baldwin County	-. 076	. 056	. 750	-. 24	. 09
	Rest of Alabama	-. 072	. 057	. 800	-. 24	. 09
	Mississippi Service Area	-. 061	. 064	. 933	-. 25	. 12
	Rest of United States	-. 014	. 069	1.000	-. 21	. 18
	International	-.315*	. 069	. 000	-. 52	-. 11
Rest of United States	Mobile or Baldwin County	-. 062	. 046	. 755	-. 20	. 07
	Rest of Alabama	-. 058	. 047	. 815	-. 19	. 08
	Mississippi Service Area	-. 047	. 056	. 959	-. 21	. 11
	Florida Service Area	. 014	. 069	1.000	-. 18	. 21
	International	-.301*	. 061	. 000	-. 48	-. 12
International	Mobile or Baldwin County	. 238	. 046	. 000	. 10	. 38
	Rest of Alabama	. $243{ }^{*}$. 047	. 000	. 10	. 39
	Mississippi Service Area	. $253{ }^{*}$. 056	. 000	. 09	. 42
	Florida Service Area	. $315{ }^{*}$. 069	. 000	. 11	. 52
	Rest of United States	. $301{ }^{*}$. 061	. 000	. 12	. 48

*. The mean difference is significant at the 0.05 level.

High School GPA * Multiple Comparisons Dependent Variable: Returned

Games-Howell

		Mean (I) HS GPA		Std. Error	Sig.	95\% Confidence Interval	
	(J) HS GPA	Lower Bound	Upper Bound				
2.5 or lower	$2.51-3.0$	-.155	.067	.103	-.33	.02	
	$3.01-3.5$	$-.225^{*}$.065	.004	-.40	-.06	
	$3.51-4.0$	$-.371^{*}$.063	.000	-.54	-.21	
$2.51-3.0$	2.5 or lower	.155	.067	.103	-.02	.33	
	$3.01-3.5$	-.070	.034	.159	-.16	.02	
	$3.51-4.0$	$-.216^{*}$.030	.000	-.29	-.14	
$3.01-3.5$	2.5 or lower	$.225^{*}$.065	.004	.06	.40	
	$2.51-3.0$.070	.034	.159	-.02	.16	
	$3.51-4.0$	$-.146^{*}$.024	.000	-.21	-.08	
$3.51-4.0$	2.5 or lower	$.371^{*}$.063	.000	.21	.54	
	$2.51-3.0$	$.216^{*}$.030	.000	.14	.29	
	$3.01-3.5$	$.146^{*}$.024	.000	.08	.21	

*. The mean difference is significant at the 0.05 level.
ACT Composite * Multiple Comparisons
Dependent Variable: Returned

Games-Howell						
(I) ACT	(J) ACT	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
18 or lower	19-20	. 018	. 042	. 998	-. 10	. 14
	21-23	-. 046	. 039	. 853	-. 16	. 07
	24-26	-. 068	. 040	. 524	-. 18	. 05
	27-29	-. 102	. 043	. 174	-. 23	. 02
	30 or higher	-.151*	. 049	. 026	-. 29	-. 01
19-20	18 or lower	-. 018	. 042	. 998	-. 14	. 10
	21-23	-. 064	. 034	. 429	-. 16	. 03
	24-26	-. 086	. 034	. 130	-. 18	. 01
	27-29	-. 119^{*}	. 038	. 024	-. 23	-. 01
	30 or higher	-. 169^{*}	. 045	. 003	-. 30	-. 04
21-23	18 or lower	. 046	. 039	. 853	-. 07	. 16
	19-20	. 064	. 034	. 429	-. 03	. 16
	24-26	-. 022	. 031	. 983	-. 11	. 07
	27-29	-. 056	. 036	. 627	-. 16	. 05
	30 or higher	-. 105	. 042	. 134	-. 23	. 02
24-26	18 or lower	. 068	. 040	. 524	-. 05	. 18
	19-20	. 086	. 034	. 130	-. 01	. 18
	21-23	. 022	. 031	. 983	-. 07	. 11
	27-29	-. 034	. 036	. 934	-. 14	. 07
	30 or higher	-. 083	. 042	. 367	-. 20	. 04
27-29	18 or lower	. 102	. 043	. 174	-. 02	. 23
	19-20	. $119{ }^{*}$. 038	. 024	. 01	. 23
	21-23	. 056	. 036	. 627	-. 05	. 16
	24-26	. 034	. 036	. 934	-. 07	. 14
	30 or higher	-. 049	. 046	. 890	-. 18	. 08
30 or higher	18 or lower	. $151{ }^{*}$. 049	. 026	. 01	. 29
	19-20	. $169{ }^{*}$. 045	. 003	. 04	. 30
	21-23	. 105	. 042	. 134	-. 02	. 23
	24-26	. 083	. 042	. 367	-. 04	. 20
	27-29	. 049	. 046	. 890	-. 08	. 18

*. The mean difference is significant at the 0.05 level.

College * Multiple Comparisons

Dependent Variable: Returned
Games-Howell

(I) College Logistic	(J) College Logistic	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
AS	AH	-. 013	. 030	1.000	-. 11	. 08
	BU	-. 083	. 040	. 442	-. 21	. 04
	CS	-. 068	. 054	. 913	-. 24	. 10
	ED	-. 028	. 050	. 999	-. 18	. 13
	EG	-. 017	. 033	1.000	-. 12	. 08
	NU	-. 024	. 034	. 997	-. 13	. 08
	CE	. 359	. 334	. 918	-2.69	3.41
AH	AS	. 013	. 030	1.000	-. 08	. 11
	BU	-. 070	. 043	. 737	-. 20	. 06
	CS	-. 055	. 056	. 977	-. 23	. 12
	ED	-. 015	. 053	1.000	-. 18	. 15
	EG	-. 004	. 036	1.000	-. 11	. 11
	NU	-. 011	. 037	1.000	-. 12	. 10
	CE	. 372	. 334	. 908	-2.67	3.41
BU	AS	. 083	. 040	. 442	-. 04	. 21
	AH	. 070	. 043	. 737	-. 06	. 20
	CS	. 015	. 062	1.000	-. 18	. 21
	ED	. 055	. 059	. 982	-. 13	. 24
	EG	. 066	. 045	. 819	-. 07	. 20
	NU	. 059	. 046	. 901	-. 08	. 20
	CE	. 442	. 335	. 844	-2.56	3.45
CS	AS	. 068	. 054	. 913	-. 10	. 24
	AH	. 055	. 056	. 977	-. 12	. 23
	BU	-. 015	. 062	1.000	-. 21	. 18
	ED	. 040	. 069	. 999	-. 17	. 25
	EG	. 051	. 058	. 987	-. 13	. 23
	NU	. 044	. 058	. 995	-. 14	. 22
	CE	. 427	. 337	. 861	-2.52	3.37
ED	AS	. 028	. 050	. 999	-. 13	. 18
	AH	. 015	. 053	1.000	-. 15	. 18
	BU	-. 055	. 059	. 982	-. 24	. 13
	CS	-. 040	. 069	. 999	-. 25	. 17
	EG	. 011	. 054	1.000	-. 15	. 18
	NU	. 004	. 055	1.000	-. 16	. 17
	CE	. 387	. 337	. 898	-2.58	3.35
EG	AS	. 017	. 033	1.000	-. 08	. 12
	AH	. 004	. 036	1.000	-. 11	. 11
	BU	-. 066	. 045	. 819	-. 20	. 07
	CS	-. 051	. 058	. 987	-. 23	. 13
	ED	-. 011	. 054	1.000	-. 18	. 15
	NU	-. 007	. 039	1.000	-. 13	. 11
	CE	. 376	. 334	. 905	-2.66	3.41
NU	AS	. 024	. 034	. 997	-. 08	. 13
	AH	. 011	. 037	1.000	-. 10	. 12
	BU	-. 059	. 046	. 901	-. 20	. 08
	CS	-. 044	. 058	. 995	-. 22	. 14
	ED	-. 004	. 055	1.000	-. 17	. 16
	EG	. 007	. 039	1.000	-. 11	. 13
	CE	. 383	. 335	. 899	-2.65	3.41

Orientation * Multiple Comparisons * Dependent Variable: Returned * Games-Howell

(I) Orientation	(J) Orientation	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
August/Other Orientation (Adult, Transfer, or Unknown)	May Orientation	-.236 ${ }^{*}$. 073	. 037	-. 46	-. 01
	Freshman Session 1	-.199*	. 046	. 001	-. 34	-. 06
	Freshman Session 2	-.157*	. 047	. 023	-. 30	-. 01
	Freshman Session 3	-. $154{ }^{*}$. 047	. 026	-. 30	-. 01
	Freshman Session 4	-. 117	. 048	. 234	-. 26	. 03
	Freshman Session 5	-. 065	. 052	. 913	-. 22	. 09
	Freshman Session 6	-. 016	. 055	1.000	-. 18	. 15
May Orientation	August/Other Orientation	. $236{ }^{*}$. 073	. 037	. 01	46
	Freshman Session 1	. 037	. 065	. 999	-. 17	24
	Freshman Session 2	. 079	. 066	. 928	-. 13	. 29
	Freshman Session 3	. 082	. 065	. 912	-. 12	. 29
	Freshman Session 4	. 119	. 066	. 628	-. 09	. 33
	Freshman Session 5	. 171	. 069	. 225	-. 05	. 39
	Freshman Session 6	. 219	. 071	. 056	. 00	. 44
Freshman Session 1	August/Other Orientation	.199*	. 046	. 001	. 06	. 34
	May Orientation	-. 037	. 065	. 999	-. 24	. 17
	Freshman Session 2	. 043	. 034	. 916	-. 06	. 15
	Freshman Session 3	. 045	. 033	. 878	-. 06	. 15
	Freshman Session 4	. 082	. 035	. 274	-. 02	. 19
	Freshman Session 5	.134*	. 040	. 019	. 01	. 26
	Freshman Session 6	.183*	. 044	. 001	. 05	. 32
Freshman Session 2	August/Other Orientation	. 157	. 047	. 023	. 01	. 30
	May Orientation	-. 079	. 066	. 928	-. 29	. 13
	Freshman Session 1	-. 043	. 034	. 916	-. 15	. 06
	Freshman Session 3	. 003	. 035	1.000	-. 10	. 11
	Freshman Session 4	. 040	. 036	. 958	-. 07	. 15
	Freshman Session 5	. $092 \times$. 041	. 328	-. 03	. 22
	Freshman Session 6	. $140{ }^{*}$. 045	. 038	. 00	. 28
Freshman Session 3	August/Other Orientation	.154*	. 047	. 026	. 01	. 30
	May Orientation	-. 082	. 065	. 912	-. 29	. 12
	Freshman Session 1	-. 045	. 033	. 878	-. 15	. 06
	Freshman Session 2	-. 003	. 035	1.000	-. 11	. 10
	Freshman Session 4	. 037	. 036	. 970	-. 07	. 15
	Freshman Session 5	. 089	. 040	. 356	-. 03	. 21
	Freshman Session 6	. $137{ }^{*}$. 044	. 043	. 00	. 27
Freshman Session 4	August/Other Orientation	. 117	. 048	. 234	-. 03	. 26
	May Orientation	-. 119	. 066	. 628	-. 33	. 09
	Freshman Session 1	-. 082	. 035	. 274	-. 19	. 02
	Freshman Session 2	-. 040	. 036	. 958	-. 15	. 07
	Freshman Session 3	-. 037	. 036	. 970	-. 15	. 07
	Freshman Session 5	. 052	. 042	. 921	-. 08	. 18
	Freshman Session 6	. 100	. 046	. 353	-. 04	. 24
Freshman Session 5	August/Other Orientation	. 065	. 052	. 913	-. 09	. 22
	May Orientation	-. 171	. 069	. 225	-. 39	. 05
	Freshman Session 1	-. $134{ }^{*}$. 040	. 019	-. 26	-. 01
	Freshman Session 2	-. 092	. 041	. 328	-. 22	. 03
	Freshman Session 3	-. 089	. 040	. 356	-. 21	. 03
	Freshman Session 4	-. 052	. 042	. 921	-. 18	. 08
	Freshman Session 6	. 049	. 049	. 976	-. 10	. 20
Freshman Session 6	August/Other Orientation	. 016	. 055	1.000	-. 15	. 18
	May Orientation	-. 219	. 071	. 056	-. 44	. 00
	Freshman Session 1	-.183*	. 044	. 001	-. 32	-. 05
	Freshman Session 2	-. $140{ }^{*}$. 045	. 038	-. 28	. 00
	Freshman Session 3	-. $137{ }^{*}$. 044	. 043	-. 27	. 00
	Freshman Session 4	-. 100	. 046	. 353	-. 24	. 04
	Freshman Session 5	-. 049	. 049	. 976	-. 20	10

*. The mean difference is significant at the 0.05 level.

JagAlert Fall 2013 * Multiple Comparisons
Dependent Variable: Returned

(I) JagAlert Fall 2013 (J) JagAlert Fall 2013		Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval		
		Lower Bound			Upper Bound		
No JagAlert Fall 2013	1 Course w/ JagAlert Fall 2013		.081*	. 024	. 002	. 03	. 14
	Multiple Courses w/ JagAlert Fall 2013	. $320{ }^{*}$. 025	. 000	. 26	. 38	
1 Course w/ JagAlert Fall 2013	No JagAlert Fall 2013 Multiple Courses w/ JagAlert Fall 2013	$\begin{gathered} -.081^{*} \\ .239^{*} \end{gathered}$	$\begin{aligned} & .024 \\ & .029 \end{aligned}$	$\begin{aligned} & .002 \\ & .000 \end{aligned}$	$\begin{array}{r} \hline-.14 \\ .17 \end{array}$	-.03 .31	
Multiple Courses w/ JagAlert Fall 2013	No JagAlert Fall 2013 1 Course w/ JagAlert Fall 2013	$\begin{aligned} & \hline-.320^{\prime} \\ & -.239^{*} \end{aligned}$	$\begin{array}{\|l\|} \hline .025 \\ .029 \end{array}$	$\begin{aligned} & \hline .000 \\ & .000 \end{aligned}$	-.38 -.31	-.26 -.17	

*. The mean difference is significant at the 0.05 level.

USA Hours Earned * Multiple Comparisons

Dependent Variable: Returned
Games-Howell

(I) USA Hours Earned	(J) USA Hours Earned	MeanDifference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
0-6 hours	6.5-12 hours	-. 084	. 042	. 337	-. 20	. 04
	12.5-18 hours	-. $322{ }^{*}$. 046	. 000	-. 45	-. 19
	18.5-24 hours	-.615*	. 038	. 000	-. 72	-. 50
	24.5-30 hours	-. $762{ }^{*}$. 029	. 000	-. 85	-. 68
	30.5 or more hours	-.854*	. 026	. 000	-. 93	-. 78
6.5-12 hours	0-6 hours	. 084	. 042	. 337	-. 04	. 20
	12.5-18 hours	-. $238{ }^{*}$. 051	. 000	-. 39	-. 09
	18.5-24 hours	-.531**	. 044	. 000	-. 66	-. 40
	24.5-30 hours	-.679 ${ }^{*}$. 037	. 000	-. 78	-. 57
	30.5 or more hours	-. $771{ }^{*}$. 034	. 000	-. 87	-. 67
12.5-18 hours	0-6 hours	. 322	. 046	. 000	. 19	. 45
	6.5-12 hours	. $238{ }^{*}$. 051	. 000	. 09	. 39
	18.5-24 hours	-.292**	. 049	. 000	-. 43	-. 15
	24.5-30 hours	-. 440 *	. 042	. 000	-. 56	-. 32
	30.5 or more hours	-. $532{ }^{*}$. 040	. 000	-. 65	-. 42
18.5-24 hours	0-6 hours	. 615	. 038	. 000	. 50	. 72
	6.5-12 hours	. $531{ }^{*}$. 044	. 000	. 40	. 66
	12.5-18 hours	. $292{ }^{*}$. 049	. 000	. 15	. 43
	24.5-30 hours	-.148*	. 033	. 000	-. 24	-. 05
	30.5 or more hours	-.240*	. 030	. 000	-. 33	-. 15
24.5-30 hours	0-6 hours	. 762	. 029	. 000	. 68	. 85
	6.5-12 hours	. 679^{*}	. 037	. 000	. 57	. 78
	12.5-18 hours	. $440{ }^{*}$. 042	. 000	. 32	. 56
	18.5-24 hours	. $148{ }^{*}$. 033	. 000	. 05	. 24
	30.5 or more hours	-.092*	. 018	. 000	-. 14	-. 04
30.5 or more hours	0-6 hours	. 854	. 026	. 000	. 78	. 93
	6.5-12 hours	.771*	. 034	. 000	. 67	. 87
	12.5-18 hours	. $532{ }^{*}$. 040	. 000	. 42	. 65
	18.5-24 hours	. 240 *	. 030	. 000	. 15	. 33
	24.5-30 hours	.092*	. 018	. 000	. 04	. 14

*. The mean difference is significant at the 0.05 level.

USA GPA * Multiple Comparisons
Dependent Variable: Returned
Games-Howell

(I) USA GPA	(J) USA GPA	MeanDifference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
2.0 or lower	2.01-2.5	-.350*	. 036	. 000	-. 45	-. 25
	2.51-3.0	-. $456{ }^{*}$. 031	. 000	-. 54	-. 37
	3.01-3.5	-. 501 *	. 028	. 000	-. 58	-. 42
	3.51-4.0	-. $533{ }^{*}$. 028	. 000	-. 61	-. 46
2.01-2.5	2.0 or lower	. 350	. 036	. 000	. 25	. 45
	2.51-3.0	-.106*	. 035	. 021	-. 20	-. 01
	3.01-3.5	-. $151{ }^{*}$. 033	. 000	-. 24	-. 06
	3.51-4.0	-. 182^{*}	. 032	. 000	-. 27	-. 10
2.51-3.0	2.0 or lower	. 456 *	. 031	. 000	. 37	. 54
	2.01-2.5	. $106{ }^{*}$. 035	. 021	. 01	. 20
	3.01-3.5	-. 045	. 027	. 451	-. 12	. 03
	3.51-4.0	-. $077{ }^{*}$. 026	. 029	-. 15	-. 01
3.01-3.5	2.0 or lower	. 501 "	. 028	. 000	. 42	. 58
	2.01-2.5	. $151{ }^{*}$. 033	. 000	. 06	. 24
	2.51-3.0	. 045	. 027	. 451	-. 03	. 12
	3.51-4.0	-. 032	. 023	. 645	-. 09	. 03
3.51-4.0	2.0 or lower	. $533{ }^{*}$. 028	. 000	. 46	. 61
	2.01-2.5	. $182 \times$. 032	. 000	. 10	. 27
	2.51-3.0	.077*	. 026	. 029	. 01	. 15
	3.01-3.5	. 032	. 023	. 645	-. 03	. 09

*. The mean difference is significant at the 0.05 level.

[^0]: ${ }^{1}$ Astin, A. W. (2002). Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education. American Council on Education, Oryx Press.
 ${ }^{2}$ Input variables: Gender, race/ethnicity, age, region, high school GPA, and ACT Composite score.
 ${ }^{3}$ Environmental variables: USA freshman scholarship, other scholarship, Pell Grant, housing, learning community, Freshman Seminar, college, and orientation session attended.
 ${ }^{4}$ Outcome variables after Fall 2013: Number of courses received a JagAlert and probation status.
 ${ }^{5}$ Outcome variables after Summer 2014: USA hours earned (model 4) and USA GPA (model 5).

[^1]: ${ }^{6}$ Due to the small number of students with a Hawaiian/Pacific Islander, Native-American, and Unknown IPEDS race/ethnicity, these three subgroups were combined into an "Other" race/ethnicity group.

[^2]: ${ }^{7}$ Other scholarship includes third party private scholarships that are not considered a USA Freshman scholarship. Institutional Research

[^3]: ${ }^{8}$ Continuing Education retention is not reported since there were only three students from Continuing Education in this cohort. Institutional Research

[^4]: ${ }^{9}$ Eleven students attended the Adult orientation session or a Transfer orientation session held in the evening to accommodate adult/working students while 64 students either attended an unknown orientation session or did not attend any of the orientation sessions held for new students. As with previous freshman cohort retention reports, the retention results for students who attended one of these orientation sessions were combined for this analysis.

